Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado

METEOROLOGICAL APPLICATIONS(2003)

引用 34|浏览11
暂无评分
摘要
The impact of vegetation on the microclimate has not been adequately considered in the analysis of temperature forecasting and modelling. To fill part of this gap, the following study was undertaken. A daily 850-700 mb layer mean temperature, computed from the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis, and satellite-derived greenness values, as defined by NDVI (Normalised Difference Vegetation Index), were correlated with surface maximum and minimum temperatures at six sites in northeast Colorado for the years 1989-98. The NDVI values, representing landscape greenness, act as a proxy for latent beat partitioning via transpiration. These sites encompass a wide array of environments, from irrigated-urban to short-grass prairie. The explained variance (r(2) value) of surface maximum and minimum temperature by only the 850-700 mb layer mean temperature was subtracted from the corresponding explained variance by the 850-700 mb layer mean temperature and NDVI values. The subtraction shows that by including NDVI values in the analysis, the r(2) values, and thus the degree of explanation of the surface temperatures, increase by a mean of 6% for the maxima and 8% for the minima over the period March-October. At most sites, there is a seasonal dependence in the explained variance of the maximum temperatures because of the seasonal cycle of plant growth and senescence. Between individual sites, the highest increase in explained variance occurred at the site with the least amount of anthropogenic influence. This work suggests the vegetation state needs to be included as a factor in surface temperature forecasting, numerical modeling, and climate change assessments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要