AI helps you reading Science

AI generates interpretation videos

AI extracts and analyses the key points of the paper to generate videos automatically


pub
Go Generating

AI Traceability

AI parses the academic lineage of this thesis


Master Reading Tree
Generate MRT

AI Insight

AI extracts a summary of this paper


Weibo:
The chemical composition of river water samples used to prepare the manufactured nanomaterials aqueous suspensions is tabulated in the SI

Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition.

Environmental science & technology, no. 9 (2009): 3322-3328

Cited by: 296|Views7
WOS

Abstract

Experimental conditions that mimic likely scenarios of manufactured nanomaterials (MNs) introduction to aquatic systems were used to assessthe effect of nanoparticle dispersion/solubility and water chemical composition on MN-toxicity. Aqueous suspensions of fullerenes (C60), nanosilver (nAg), and nanocopper (nCu) were prepared in both dei...More

Code:

Data:

0
Introduction
  • The success of nanotechnology and the resulting widespread production and use of manufactured nanomaterials (MNs) will undoubtedly lead to their introduction to the environment [1], and aquatic systems are likely to behave as primary

    3322 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 43, NO. 9, 2009 sinks for these new pollutants.
  • Characterization of Tested MNs and Preparation of Aqueous-Suspensions in Natural River Water Samples.
Highlights
  • The success of nanotechnology and the resulting widespread production and use of manufactured nanomaterials (MNs) will undoubtedly lead to their introduction to the environment [1], and aquatic systems are likely to behave as primary

    3322 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 43, NO. 9, 2009 sinks for these new pollutants
  • If current efforts to understand the biological effects of MNs on human health have relied on rather appropriate techniques such as inhalation exposures, studies focusing on the environmental implications use primarily drastic approaches to facilitate the contact between MNs and tested model organisms
  • Most laboratory studies on toxicity of MNs have focused on their impacts on model organisms, using experimental procedures adapted from classic toxicity studies [4,5,6,7,8,9,10,11]
  • The chemical composition of river water samples used to prepare the MN aqueous suspensions is tabulated in the SI
  • The background concentrations of both AgT and CuT were below analytical detection limits (<10 μg/L)
  • NAg suspended in DI-water and sample Suwannee River (SR)-1 resulted in particles with average size <100 nm, whereas nAg suspensions in SR-2 and SR-3 formed much larger aggregates with particle sizes >100 nm (Figure 1a). These patterns show that the lack of electrolytes in DI-water and the combination of low electrolyte and high dissolved organic carbon (DOC) concentrations in SR-1 samples limit the aggregation of nAg particles to an average size of <100nm
Results
  • The authors will use the above framework to discuss the aggregation and toxicity patterns observed in this study, while emphasizing any deviation that could result from the complexity of natural water matrices in which the above listed electrolytes and DOC co-occur in different molar ratios.
  • These patterns show that the lack of electrolytes in DI-water and the combination of low electrolyte and high DOC concentrations in SR-1 samples limit the aggregation of nAg particles to an average size of <100nm.
  • These observations suggest that in complex natural water matrices DOC, pH, and the concentrations of different electrolytes are likely intricately coupled in controlling aggregation patterns, resulting in significant agglomeration effects even when the individual concentrations of monoand multivalent metal cations are below their reported CCC.
  • NCu (Figure 1b) and C60 (Figure 1c) resulted in similar aggregation patterns, which were different from that of nAg. If the observed enhanced aggregation of nCu and C60 in SR-3 could be attributed to the effect of high electrolyte and low DOC concentrations, the formation of large size aggregates in DI-water suspensions is likely related to particle reactivity.
  • NCu. In contrast to the rather complex response of nAg to solution chemistry, CuT in tested waters seem to follow DOC trends (Figure 2b), in that high DOC content overlaps with high levels of ICP-AES quantifiable CuT in analyzed suspensions.
  • The highest toxicity response was observed on organisms exposed to DI-water based suspensions, with a LC50 of 0.46 μg/L for Ag, and 2.14 μg/L for Cu. With regard to nAg, LC50 values of 6.18, 0.771, and 0.696 μg/L were obtained for SR-1, SR-2, and SR-3, respectively.
  • These observations support the toxicity trend seen in this study, in that, the lower toxicity effect was obtained with nAg suspended in the organic-rich SR-1 water.
Conclusion
  • If the obtained CCC in such cases are good predictors of the effect of electrolyte concentrations on MN-aggregation behaviors, the data tend to suggest that the complexity of natural water matrices, in which several electrolytes co-occur could result in different and possibly lower CCC values.
  • Several questions remain answered and further investigations focusing on the mechanisms driving NM suspension/dissolution and toxicity in natural waters are needed, the results are of great significance in the context of understanding the fate, transformation and biological effects of MNs in natural aquatic environments.
Funding
  • This research was supported by a grant from the U.S Environmental Protection Agency (R-832635) and a seed grant from the University of Florida, School of Natural Resources and Environment to JCB. Supporting Information Available Details of sample collection methods and sampling site description, C60 analysis method, and a description of used toxicity tests
Reference
  • (1) Gao, J.; Bonzongo, J. C. J.; Bitton, G.; Li, Y.; Wu, C. Y. Nanowastes and the environment: Using mercury as an example pollutant to assess the environmental fate of chemicals adsorbed onto manufactured nanomaterials. Environ. Toxicol. Chem. 2008, 27 (4), 808–810.
    Google ScholarLocate open access versionFindings
  • (2) Christen, K. Nanomaterials meet increased scrutiny. Environ. Sci. Technol. News 2007, 41 (3), 671–672.
    Google ScholarLocate open access versionFindings
  • (3) Lovern, S. B.; Strickler, J. R.; Klaper, R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ. Sci. Technol. 2007, 41 (12), 4465–4470.
    Google ScholarLocate open access versionFindings
  • (4) Zhu, S. Q.; Oberdorster, E.; Haasch, M. L. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res. 2006, 62, S5-S9.
    Google ScholarLocate open access versionFindings
  • (5) Griffitt, R. J.; Weil, R.; Hyndman, K. A.; Denslow, N. D.; Powers, K.; Taylor, D.; Barber, D. S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 2007, 41 (23), 8178–8186.
    Google ScholarLocate open access versionFindings
  • (6) Rameshbabu, N.; Kumar, T. S. S.; Prabhakar, T. G; Sastry, V. S.; Murty, K. V. G. K.; Rao, K. P. Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization. J. Biomed. Mater. Res., Part A 2007, 80 (3), 581–591.
    Google ScholarLocate open access versionFindings
  • (7) Wei, Q. S.; Ji, J.; Fu, J. H.; Shen, J. C. Norvancomycin-capped silver nanoparticles: Synthesis and antibacterial activities against E. coli. Sci. China, Ser. B: Chem. 2007, 50 (3), 418–424.
    Google ScholarLocate open access versionFindings
  • (8) Du, W. L.; Xu, Y. L.; Xu, Z. R.; Fan, C. L. Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions. Nanotechnology 2008, 19 (8), 085707.
    Google ScholarLocate open access versionFindings
  • (9) Yoon, K. Y.; Byeon, J. H.; Park, J. H.; Hwang, J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 2007, 373 (2-3), 572– 575.
    Google ScholarLocate open access versionFindings
  • (10) Fortner, J. D.; Lyon, D. Y.; Sayes, C. M.; Boyd, A. M.; Falkner, J. C.; Hotze, E. M.; Alemany, L. B.; Tao, Y. J.; Guo, W.; Ausman, K. D. C60 in water: Nanocrystal formation and microbial response. Environ. Sci. Technol. 2005, 39 (11), 4307–4316.
    Google ScholarLocate open access versionFindings
  • (11) USEPA. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms; Environmental Protection Agency: Washington, DC, 2002.
    Google ScholarFindings
  • (12) Deguchi, S.; Alargova, R. G.; Tsujii, K. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization. Langmuir 2001, 17 (19), 6013–6017.
    Google ScholarLocate open access versionFindings
  • (13) Griffitt, R. J.; Luo, J.; Gao, J.; Bonzongo, J. C.; Barber, D. S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 2008, 27 (9), 1972–1978.
    Google ScholarLocate open access versionFindings
  • (14) Bitton, G.; Jung, K.; Koopman, B. Evaluation of a microplate assay specific for heavy-metal toxicity. Arch. Environ. Contam. Toxicol. 1994, 27 (1), 25–28.
    Google ScholarLocate open access versionFindings
  • (15) Del Castillo, C. E.; Gilbes, F.; Coble, P. G.; Muller-Karger, F. E. On the dispersal of riverine colored dissolved organic matter over the West Florida Shelf. Limnol. Oceanogr. 2000, 45 (6), 1425–1432.
    Google ScholarLocate open access versionFindings
  • (16) Chen, K. L.; Elimelech, M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 2007, 309 (1), 126–134.
    Google ScholarLocate open access versionFindings
  • (17) Chen, K. L.; Elimelech, M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 2006, 22 (26), 10994– 11001.
    Google ScholarLocate open access versionFindings
  • (18) Tipping, E.; Ohnstad, M. Colloid stability of iron-oxide particles from a fresh-water lake. Nature (London) 1984, 308 (5956), 266– 268.
    Google ScholarLocate open access versionFindings
  • (19) Saleh, N. B.; Pfefferle, L. D.; Elimelech, M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications. Environ. Sci. Technol. 2008, 42 (21), 7963–7969.
    Google ScholarLocate open access versionFindings
  • (20) Chang, X.; Vikesland, P. J. Effects of carboxylic acids on nC60 aggregate formation. Environ. Pollut. 2009, 157 (4), 1072–1080.
    Google ScholarLocate open access versionFindings
  • (21) Lok, C. N.; Ho, C. M.; Chen, R.; He, Q. Y.; Yu, W. Y.; Sun, H; Tam, P. K. H.; Chiu, J. F.; Che, C. M. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12 (4), 527–534.
    Google ScholarLocate open access versionFindings
  • (22) Fan, F. R. F.; Bard, A. J. Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films. J. Phys. Chem. B 2002, 106 (2), 279–287.
    Google ScholarLocate open access versionFindings
  • (23) Bury, N. R.; Shaw, J.; Glover, C.; Flogstrand, C. Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates. Comp. Biochem. Phys. C 2002, 133 (1-2), 259–270.
    Google ScholarLocate open access versionFindings
  • (24) Janes, N.; Playle, R. C. Modeling silver-binding to gills of rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 1995, 14 (11), 1847–1858.
    Google ScholarLocate open access versionFindings
  • (25) Lide, D. R.; Frederikse, H. P. R. CRC Handbook of Chemistry and Physics, 78th ed.; CRC-Press: Boca Raton, FL, 1997.
    Google ScholarFindings
  • (26) Pastoriza-Santos, I.; Liz-Marzan, L. Formation of PVP-protected metal nanoparticles in DMF. Langmuir 2002, 18, 2888–2894.
    Google ScholarLocate open access versionFindings
  • (27) Mucalo, M. R.; Bullen, C. R.; Manley-Harris, M.; McIntire, T. M. Arabinogalactan from the Western larch tree: A new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J. Mater. Sci. 2002, 37 (3), 493–504.
    Google ScholarLocate open access versionFindings
  • (28) Zhou, Q.; Fan, Q.; Zhuang, Y.; Li, Y.; Zhao, G.; Zheng, J. W. Effect of substrate on surface-enhanced Raman scattering of molecules adsorbed on immobilized silver nanoparticles. J. Phys. Chem. B 2006, 110 (24), 12029–12033.
    Google ScholarLocate open access versionFindings
  • (29) Mayer, A. B. R.; Johnson, R. W.; Hausner, S. H.; Mark, J. E. Colloidal silver nanoparticles protected by water-soluble nonionic polymers and “soft” polyacids. J. Macromol. Sci. Pure 1999, A36 (10), 1427–1441.
    Google ScholarLocate open access versionFindings
  • (30) Leal, M. F. C.; Van den Berg, C. M. G. Evidence for strong copper(I) complexation by organic ligands in seawater. Aquat. Geochem. 1998, 4 (1), 49–75.
    Google ScholarLocate open access versionFindings
  • (31) Xie, S. Y.; Ma, Z. J.; Wang, C. F.; Lin, S. C.; Jiang, Z. Y.; Huang, R. B.; Zheng, L. S. Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution: A combination of physical and chemical processes. J. Solid State Chem. 2004, 177 (10), 3743–3747.
    Google ScholarLocate open access versionFindings
  • (32) Wen, L. S.; Santschi, P.; Gill, G.; Paternostro, C. Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Mar. Chem 1999, 63 (3-4), 185–212.
    Google ScholarLocate open access versionFindings
  • (33) Cantwell, M. G.; Burgess, R. M. Metal-colloid partitioning in artificial interstitial waters of marine sediments: Influences of salinity, pH, and colloidal organic carbon concentration. Environ. Toxicol. Chem. 2001, 20 (11), 2420–2427.
    Google ScholarLocate open access versionFindings
  • (34) Heymann, D. Solubility of fullerenes C60 and C70 in seven normal alcohols and their deduced solubility in water. Fullerene Sci. Technnol 1996, 4 (3), 509–515.
    Google ScholarLocate open access versionFindings
  • (35) Ruoff, R. S.; Tse, D. S.; Malhotra, R.; Lorents, D. C. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 1993, 97 (13), 3379–3383.
    Google ScholarLocate open access versionFindings
  • (36) Espinasse, B.; Hotze, E. M.; Wiesner, M. R. Transport and retention of colloidal aggregates of C60 in porous media: Effects of organic macromolecules, ionic composition, and preparation method. Environ. Sci. Technol. 2007, 41 (21), 7396–7402.
    Google ScholarLocate open access versionFindings
  • (37) Hyung, H.; Fortner, J. D.; Hughes, J. B.; Kim, J. H. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 2007, 41 (1), 179–184.
    Google ScholarLocate open access versionFindings
  • (38) Chen, K. L.; Elimelech, M. Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 2007, 309 (1), 126–134.
    Google ScholarLocate open access versionFindings
  • (39) Deguchi, S.; Yamazaki, T.; Mukai, S.; Usami, R.; Horikoshi, K. Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem. Res. Toxicol. 2007, 20 (6), 854–858.
    Google ScholarLocate open access versionFindings
  • (40) Jones, M. N.; Bryan, N. D. Colloidal properties of humic substances. Adv. Colloid Interface Sci. 1998, 78 (1), 1–48.
    Google ScholarLocate open access versionFindings
  • (41) Brant, J.; Lecoanet, H.; Hotze, M.; Wiesner, M. Comparison of electrokinetic properties of colloidal fullerenes (nC60) formed using two procedures. Environ. Sci. Technol. 2005, 39 (17), 6343– 6351.
    Google ScholarLocate open access versionFindings
  • (42) Apte, S. C.; Batley, G. E.; Bowles, K. C.; Brown, P. L.; Creighton, N.; Hales, L. T.; Hyne, R. V.; Julli, M.; Markich, S. I.; Pablo, F. et al. A comparison of copper speciation measurements with the toxic responses of three sensitive freshwater organisms. Environ. Chem. 2005, 2 (4), 320–330.
    Google ScholarLocate open access versionFindings
  • (43) Kopelevich, D. I.; Bonzongo, J. C.; Gao, J.; Tasseff R. A.; Ban, Y.-M.; Bitton, G. Potential toxicity of fullerenes and molecular modeling of their transport across lipid membranes. In Nanoscience and Nanotechnology: Environmental and Health Impact, 2008.
    Google ScholarLocate open access versionFindings
  • (44) Zhu, S. Q.; Oberdorster, E.; Haasch, M. L. Toxicity of an engineered nanoparticle (fullerene, C-60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res. 2006, 62, S5-S9.
    Google ScholarLocate open access versionFindings
  • (45) Lyon, D. Y.; Adams, L. K.; Falkner, J. C.; Alvarez, P. J. J. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 2006, 40 (14), 4360–4366.
    Google ScholarLocate open access versionFindings
  • (46) Spohn, P.; Hirsch, C.; Hasler, F.; Bruinink, A.; Krug, H. F.; Wick, P. C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ. Pollut. 2009, 157 (4), 1134–1139.
    Google ScholarLocate open access versionFindings
  • (47) Lee, D. Y.; Fortin, C.; Campbell, P. G. C. Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Aquat. Toxicol 2005, 75 (2), 127–135.
    Google ScholarLocate open access versionFindings
  • (48) VanGenderen, E. J.; Ryan, A. C.; Tomasso, J. R.; Klaine, S. J. Influence of dissolved organic matter source on silver toxicity to Pimephales promelas. Environ. Toxicol. Chem. 2003, 22 (11), 2746–2751.
    Google ScholarLocate open access versionFindings
  • (49) Morgan, T. P.; Guadagnolo, C. M.; Grosell, M.; Wood, C. M. Effects of water hardness on the physiological responses to chronic waterborne silver exposure in early life stages of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol 2005, 74 (4), 333– 350.
    Google ScholarLocate open access versionFindings
  • (50) Bury, N. R.; Galvez, F.; Wood, C. M. Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: Comparison between rainbow trout and fathead minnows. Environ. Toxicol. Chem. 1999, 18 (1), 56–62.
    Google ScholarLocate open access versionFindings
  • (51) Rodgers, J. H.; Deaver, E.; Rogers, P. L. Partitioning and effects of silver in amended freshwater sediments. Ecotox. Environ. Safe 1997, 37 (1), 1–9.
    Google ScholarLocate open access versionFindings
  • (52) Hogstrand, C.; Wood, C. M. Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: Implications for water quality criteria. Environ. Toxicol. Chem. 1998, 17 (4), 547–561.
    Google ScholarLocate open access versionFindings
  • (53) Kramer, K. J. M.; Jak, R. G.; van Hattum, B.; Hooftman, R. N.; Zwolsman, J. J. G. Copper toxicity in relation to surface waterdissolved organic matter: Biological effects to Daphnia magna. Environ. Toxicol. Chem. 2004, 23 (12), 2971–2980.
    Google ScholarLocate open access versionFindings
  • (54) Ryan, A. C.; Van Genderen, E. J.; Tomasso, J. R.; Klaine, S. J. Influence of natural organic matter source on copper toxicity to larval fathead minnows (Pimephales promelas): Implications for the biotic ligand model. Environ. Toxicol. Chem. 2004, 23 (6), 1567–1574.
    Google ScholarLocate open access versionFindings
  • (55) Perez, P.; Estevez-Blanco, P.; Beiras, R.; Fernandez, E. Effect of copper on the photochemical efficiency, growth, and chlorophyll a biomass of natural phytoplankton assemblages. Environ. Toxicol. Chem. 2006, 25 (1), 137–143.
    Google ScholarLocate open access versionFindings
  • 3328 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 43, NO. 9, 2009
    Google ScholarFindings
Your rating :
0

 

Tags
Comments
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科