AI helps you reading Science

AI generates interpretation videos

AI extracts and analyses the key points of the paper to generate videos automatically


pub
Go Generating

AI Traceability

AI parses the academic lineage of this thesis


Master Reading Tree
Generate MRT

AI Insight

AI extracts a summary of this paper


Weibo:
We summarize these topics under four categories: nonspecific extracellular labeling, nonspecific intracellular delivery, targeted extracellular labeling, and targeted intracellular delivery

Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging.

CHEMICAL SOCIETY REVIEWS, no. 8 (2010): 3031-3056

Cited by: 316|Views11
WOS
Keywords

Abstract

Bioconjugated nanomaterials offer endless opportunities to advance both nanobiotechnology and biomedical technology. In this regard, semiconductor nanoparticles, also called quantum dots, are of particular interest for multimodal, multifunctional and multiplexed imaging of biomolecules, cells, tissues and animals. The unique optical prope...More

Code:

Data:

0
Introduction
  • Nanomaterials have become fundamental building blocks for modern scientific and technological excellences.
Highlights
  • Nanomaterials have become fundamental building blocks for modern scientific and technological excellences
  • This review article introduces a variety of methods for interfacing quantum dots (QDs) with cells, and the versatility of QDs conjugated with polymers, proteins, peptides, antibodies and ligands as bright and stable fluorescent markers for targeted and nonspecific imaging of cells, subcellular organelles, and singlemolecules
  • We have included summary of bioconjugate reactions as well as general strategies for labeling cells in this article with an intention to draw an overall picture about the current status and usefulness of QDs for bioimaging
  • Another aim of this review is to gather information about bioconjugate methods, biomolecules, and strategies for extracellular and intracellular labeling in the field of QDs so that it can provide nano reviews on each topic to be utilized for various applications in the fields of cell biology and biotechnology
  • Synthesis, optical properties and surface chemistry of QDs are all well-optimized that preparation of bioconjugated QDs is not a problem anymore
  • Ready-to-label QDbioconjugates of any color have become commercially available. Having such a well-built background for QDs, we expect that the information provided in this review will be useful for introducing novel in vitro and in vivo biological applications of QDs, utilizing QD bioconjugates for investigating complex biophysical and biochemical problems, and deriving novel hybrid nanomaterials by interfacing QDs and bioconjugated QDs with organic, semiconductor and metal nanoparticles
Results
  • DHLA-capped CdSe/ZnS QDs are promising candidates for various bioconjugate reactions, detection of biomolecules by photoluminescence and Forster resonance energy transfer (FRET), and imaging of cells and tissues.[11,38,57] In short, any molecule containing one or more thiol group can be readily conjugated to QDs. Coating or conjugation of polymers on QD surface has become an inevitable step for extended stability and biocompatibility of QDs. Polymer layers offer several advantages to QDs, such as protection against hydrolysis and biochemical reactions, improved biocompatibility, and adaptable surface for bioconjugation.
  • Intracellular aggregation of QD-polyarginine conjugates in endolysosomal compartments, evidenced by colocalization experiments using fluorescentlabeled antibody to lysobisphosphatidic acid or LysoTracker, is a limitation.[104] Delahanty et al accomplished the intracellular delivery of QDs by coating a bi-functional octaarginineco-octahistidine peptide on the QD surface.[105] In this approach, the octahistidine residue due to its affinity for metal atoms facilitated noncovalent conjugation to CdSe/ZnS QDs, and the octaarginine residue due to its positive charge facilitated endocytosis in HEK 293T/17 and COS-1 cells.
  • Lei et al sophisticated Tat-mediated intracellular delivery of QDs by first encompassing CdSe/ZnS QDs in lipid micelles followed by conjugating Tat peptide to the lipid coat.[109] The QD-micelle-Tat assembly was efficiently endocytosed by mesenchymal stem cells.
  • Chen et al investigated the intracellular delivery of QDs in human alveolar basal epithelial carcinoma cells (A549) as a function of QD:Tat ratio.[111] They prepared the QD-Tat conjugate by tethering biotinylated Tat to streptavidin-coated CdSe/ZnS QDs up to 1: 40 QD:Tat ratio.
  • These treatments result in the inhibition of intracellular delivery of transferrin but QD-Tat. On the other hand, interestingly, the intracellular delivery of the conjugate was arrested when lipid-rafts associated with the membrane cholesterol was depleted, indicating that caveolae dependent endocytosis can be the most important endocytic pathway for QD-Tat. All the above examples show that efficient intracellular delivery of QDs can be accomplished by conjugating QDs with arginine-rich peptides.
Conclusion
  • Having such a well-built background for QDs, the authors expect that the information provided in this review will be useful for introducing novel in vitro and in vivo biological applications of QDs, utilizing QD bioconjugates for investigating complex biophysical and biochemical problems, and deriving novel hybrid nanomaterials by interfacing QDs and bioconjugated QDs with organic, semiconductor and metal nanoparticles
Reference
  • 1 L. E. Brus, J. Chem. Phys., 1984, 80, 4403–4409.
    Google ScholarLocate open access versionFindings
  • 2 L. E. Brus, J. Phys. Chem., 1986, 90, 2555–2560.
    Google ScholarLocate open access versionFindings
  • Soc., 1993, 115, 8706–8715.
    Google ScholarFindings
  • 4 J. E. B. Katari, V. L. Colvin and A. P. Alivisatos, J. Phys. Chem., 1994, 98, 4109–4117.
    Google ScholarLocate open access versionFindings
  • 5 Z. A. Peng and X. Peng, J. Am. Chem. Soc., 2001, 123, 183–184.
    Google ScholarLocate open access versionFindings
  • H. Weller, Nano Lett., 2001, 1, 207–211.
    Google ScholarFindings
  • 7 T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmuller and H. Weller, J. Phys. Chem., 1994, 98, 7665–7673.
    Google ScholarLocate open access versionFindings
  • 8 L. H. Qu, Z. A. Peng and X. G. Peng, Nano Lett., 2001, 1, 333–337.
    Google ScholarFindings
  • 9 V. Biju, T. Itoh, A. Anas, A. Sujith and M. Ishikawa, Anal. Bioanal. Chem., 2008, 391, 2469–2495.
    Google ScholarLocate open access versionFindings
  • 10 B. O. Dabbousi, J. Rodriguez Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B, 1997, 98, 4109–4117.
    Google ScholarLocate open access versionFindings
  • 11 X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science, 2005, 307, 538–544.
    Google ScholarLocate open access versionFindings
  • 12 X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale and M. P. Bruchez, Nat. Biotechnol., 2003, 21, 41–46.
    Google ScholarLocate open access versionFindings
  • 13 M. Y. Han, X. H. Gao, J. Z. Su and S. Nie, Nat. Biotechnol., 2001, 19, 631–635.
    Google ScholarLocate open access versionFindings
  • 14 C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, Chem. Rev., 2005, 105, 1025–1102.
    Google ScholarLocate open access versionFindings
  • 15 A. P. Alivisatos, Science, 1996, 271, 933–937.
    Google ScholarFindings
  • 16 M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris and L. E. Brus, Nature, 1996, 383, 802–804.
    Google ScholarLocate open access versionFindings
  • 17 A. L. Efros and M. Rosen, Phys. Rev. Lett., 1997, 78, 1110–1113.
    Google ScholarLocate open access versionFindings
  • 18 M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher and D. J. Nesbitt, J. Chem. Phys., 2000, 112, 3117–3120.
    Google ScholarLocate open access versionFindings
  • 19 P. A. Frantsuzov and R. A. Marcus, Phys. Rev. B, 2005, 72, 155321.
    Google ScholarLocate open access versionFindings
  • 20 C. T. Yuan, Pyng Yu, H. C. Ko, J. Huang and J. Tang, ACS Nano, 2009, 3, 3051–3056.
    Google ScholarLocate open access versionFindings
  • 21 S. Hohng and T. Ha, J. Am. Chem. Soc., 2004, 126, 1324–1325.
    Google ScholarLocate open access versionFindings
  • 22 V. Biju, Y. Makita, T. Nagase, Y. Yamaoka, H. Yokoyama, Y. Baba and M. Ishikawa, J. Phys. Chem. B, 2005, 109, 14350–14355.
    Google ScholarLocate open access versionFindings
  • 23 Y. Matsumoto, R. Kanemoto, T. Itoh, S. Nakanishi, M. Ishikawa and V. Biju, J. Phys. Chem. C, 2008, 112, 1345–1350.
    Google ScholarLocate open access versionFindings
  • 24 X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros and T. D. Krauss, Nature, 2009, 459, 686–689.
    Google ScholarLocate open access versionFindings
  • 25 D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb, Science, 2003, 300, 1434–1436.
    Google ScholarLocate open access versionFindings
  • 26 X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung and S. M. Nie, Nat. Biotechnol., 2004, 22, 969–976.
    Google ScholarLocate open access versionFindings
  • 27 B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaber, Science, 2002, 298, 1759–1762.
    Google ScholarLocate open access versionFindings
  • 28 W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir and X. Y. Chen, Nano Lett., 2006, 6, 669–676.
    Google ScholarLocate open access versionFindings
  • 29 M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia and E. Ruoslahti, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 12617–12621.
    Google ScholarLocate open access versionFindings
  • 30 Y. Hama, Y. Koyama, Y. Urano, P. L. Choyke and H. Kobayashi, Breast Cancer Res. Treat., 2007, 103, 23–28.
    Google ScholarLocate open access versionFindings
  • 31 S. Kim, Y. T. Lim, E. G. Soltesz, A. M. de Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi and J. V. Frangioni, Nat. Biotechnol., 2004, 22, 93–97.
    Google ScholarLocate open access versionFindings
  • 32 V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas and M. Ishikawa, Biotechnol. Adv., 2010, 28, 199–213.
    Google ScholarLocate open access versionFindings
  • 33 A. C. S. Samia, S. Dayal and C. Burda, Photochem. Photobiol., 2006, 82, 617–625.
    Google ScholarLocate open access versionFindings
  • 34 J. M. Tsay, M. Trzoss, L. Shi, X. Kong, M. Selke, M. E. Jung and S. Weiss, J. Am. Chem. Soc., 2007, 129, 6865–6871.
    Google ScholarLocate open access versionFindings
  • 35 A. Anas, H. Akita, H. Harashima, T. Itoh, M. Ishikawa and V. Biju, J. Phys. Chem. B, 2008, 112, 10005–10011.
    Google ScholarLocate open access versionFindings
  • 36 P. Juzenas, W. Chen, Y.-P. Sun, M. A. N. Coelho, R. Generalov, N. Generalova and I. L. Christensen, Adv. Drug Delivery Rev., 2008, 60, 1600–1614.
    Google ScholarLocate open access versionFindings
  • 37 E. Yaghini, A. M. Seifalian and J. J. MacRobert, Nanomedicine, 2009, 4, 353–363.
    Google ScholarFindings
  • 38 I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nat. Mater., 2005, 4, 435–446.
    Google ScholarLocate open access versionFindings
  • 39 W. C. W. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han and S. M. Nie, Curr. Opin. Biotechnol., 2002, 13, 40–46.
    Google ScholarLocate open access versionFindings
  • 40 A. P. Alivisatos, W. W. Gu and C. Larabell, Annu. Rev. Biomed. Eng., 2005, 7, 55–76.
    Google ScholarLocate open access versionFindings
  • 41 T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani and A. M. Seifalian, Biomaterials, 2007, 28, 4717–4732.
    Google ScholarFindings
  • 42 Z. A. Peng and X. G. Peng, J. Am. Chem. Soc., 2002, 124, 3343–3353.
    Google ScholarLocate open access versionFindings
  • 43 T. Trindade, P. O’Brien and N. L. Pickett, Chem. Mater., 2001, 13, 3843–3858.
    Google ScholarLocate open access versionFindings
  • 44 S. J. Rosenthal, J. McBride, S. J. Pennycook and L. C. Feldman, Surf. Sci. Rep., 2007, 62, 111–157.
    Google ScholarLocate open access versionFindings
  • 45 N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller and H. Weller, J. Phys. Chem. B, 2002, 106, 7177–7185.
    Google ScholarLocate open access versionFindings
  • 46 A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmueller, Y. P. Rakovich and J. F. Donegan, J. Phys. Chem. C, 2007, 111, 14628–14637.
    Google ScholarLocate open access versionFindings
  • 47 V. Biju, Y. Makita, A. Sonoda, H. Yokoyama, Y. Baba and M. Ishikawa, J. Phys. Chem. B, 2005, 109, 13899–13905.
    Google ScholarLocate open access versionFindings
  • 48 D. J. Bharali, D. W. Lucey, H. Jayakumar, H. E. Pudavar and P. N. Prasad, J. Am. Chem. Soc., 2005, 127, 11364–11371.
    Google ScholarLocate open access versionFindings
  • 49 P. Reiss, M. Protiere and L. Li, Small, 2009, 5, 154–168.
    Google ScholarFindings
  • 50 M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 1996, 100, 468–471.
    Google ScholarLocate open access versionFindings
  • 51 X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019–7029.
    Google ScholarLocate open access versionFindings
  • 52 D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann and H. Weller, Nano Lett., 2003, 3, 1677–1681.
    Google ScholarFindings
  • 53 D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson and H. Weller, J. Phys. Chem. B, 2004, 108, 18826–18831.
    Google ScholarLocate open access versionFindings
  • 54 S. Kim, B. Fisher, H. J. Eisler and M. Bawendi, J. Am. Chem. Soc., 2003, 125, 11466–11467.
    Google ScholarLocate open access versionFindings
  • 55 W. C. W. Chan and S. M. Nie, Science, 1998, 281, 2016–2018.
    Google ScholarFindings
  • 56 H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec and M. G. Bawendi, J. Am. Chem. Soc., 2000, 122, 12142–12150.
    Google ScholarLocate open access versionFindings
  • 57 I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher and J. M. Mauro, Nat. Mater., 2003, 2, 630–638.
    Google ScholarLocate open access versionFindings
  • 58 E. L. Bentzen, I. D. Tomlinson, J. Mason, P. Gresch, M. R. Warnement, D. Wright, E. Sanders-Bush, R. Blakely and S. J. Rosenthal, Bioconjugate Chem., 2005, 16, 1488–1494.
    Google ScholarLocate open access versionFindings
  • 59 T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Radler, G. Natile and W. J. Parak, Nano Lett., 2004, 4, 703–707.
    Google ScholarLocate open access versionFindings
  • 60 V. Biju, R. Kanemoto, Y. Matsumoto, S. Ishii, S. Nakanishi, T. Itoh, Y. Baba and M. Ishikawa, J. Phys. Chem. C, 2007, 111, 7924–7932.
    Google ScholarLocate open access versionFindings
  • 61 S. Ishii, R. Ueji, S. Nakanishi, Y. Yoshida, H. Nagata, T. Itoh, M. Ishikawa and V. Biju, J. Photochem. Photobiol., A, 2006, 183, 285–291.
    Google ScholarLocate open access versionFindings
  • 62 M. A. Correa-Duarte, M. Giersig and L. M. Liz-Marzan, Chem. Phys. Lett., 1998, 286, 497–501.
    Google ScholarLocate open access versionFindings
  • 63 A. L. Rogach, D. Nagesha, J. W. Ostrander, M. Giersig and N. A. Kotov, Chem. Mater., 2000, 12, 2676–2685.
    Google ScholarLocate open access versionFindings
  • 64 D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss and A. P. Alivisatos, J. Phys. Chem. B, 2001, 105, 8861–8871.
    Google ScholarLocate open access versionFindings
  • 65 P. Mulvaney, L. M. Liz-Marzan, M. Giersig and T. Ung, J. Mater. Chem., 2000, 10, 1259–1270.
    Google ScholarLocate open access versionFindings
  • 66 T. Nann and P. Mulvaney, Angew. Chem., Int. Ed., 2004, 43, 5393–5396.
    Google ScholarLocate open access versionFindings
  • 67 S. T. Selvan, T. T. Tan and J. Y. Ying, Adv. Mater., 2005, 17, 1620–1625.
    Google ScholarLocate open access versionFindings
  • 68 J. B. Delehanty, H. Mattoussi and I. L. Medintz, Anal. Bioanal. Chem., 2009, 393, 1091–1105.
    Google ScholarLocate open access versionFindings
  • 69 W. A. Hild, M. Breunig and A. Goepferich, Eur. J. Pharm. Biopharm., 2008, 68, 153–168.
    Google ScholarLocate open access versionFindings
  • 70 M. A. Walling, J. A. Novak and J. R. E. Shepard, Int. J. Mol. Sci., 2009, 10, 441–491.
    Google ScholarLocate open access versionFindings
  • 71 A. M. Smith, H. W. Duan, A. M. Mohs and S. M. Nie, Adv. Drug Delivery Rev., 2008, 60, 1226–1240.
    Google ScholarLocate open access versionFindings
  • 72 J. K. Jaiswal, H. Mattoussi, J. M. Mauro and S. M. Simon, Nat. Biotechnol., 2003, 21, 47–51.
    Google ScholarLocate open access versionFindings
  • 73 N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel and C. E. Schmidt, Talanta, 2005, 67, 462–471.
    Google ScholarFindings
  • 74 V. V. Breus, C. D. Heyes, K. Tron and G. U. Nienhaus, ACS Nano, 2009, 3, 2573–2580.
    Google ScholarFindings
  • 75 M. J. Murcia, D. E. Minner, G. M. Mustata, K. Ritchie and C. A. Naumann, J. Am. Chem. Soc., 2008, 130, 15054–15062.
    Google ScholarLocate open access versionFindings
  • 76 J. P. Ryman-Rasmussen, J. E. Riviere and N. A. MonteiroRiviere, Nano Lett., 2007, 7, 1344–1348.
    Google ScholarLocate open access versionFindings
  • 77 L. J. Mortensen, G. Oberdorster, A. P. Pentland and L. A. DeLouise, Nano Lett., 2008, 8, 2779–2787.
    Google ScholarFindings
  • 78 G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbuhler, D. Demurtas, J. Dubochet and H. Vogel, Angew. Chem., Int. Ed., 2006, 45, 5478–5483.
    Google ScholarLocate open access versionFindings
  • 79 F. Chen and D. Gerion, Nano Lett., 2004, 4, 1827–1832.
    Google ScholarFindings
  • Fitzpatrick, A. S. Waggoner and M. P. Bruchez, Bioconjugate Chem., 2007, 18, 389–396.
    Google ScholarLocate open access versionFindings
  • 81 H. A. Gussin, I. D. Tomlinson, D. M. Little, M. R. Warnement, H. H. Qian, S. J. Rosenthal and D. R. Pepperberg, J. Am. Chem. Soc., 2006, 128, 15701–15713.
    Google ScholarLocate open access versionFindings
  • 82 A. Jayagopal, P. K. Russ and F. R. Haselton, Bioconjugate Chem., 2007, 18, 1424–1433.
    Google ScholarLocate open access versionFindings
  • 83 W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera, A. Y. Ting and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130, 1274–1284.
    Google ScholarLocate open access versionFindings
  • 84 R. Kikkeri, B. Lepenies, A. Adibekian, P. Laurino and P. H. Seeberger, J. Am. Chem. Soc., 2009, 131, 2110–2111.
    Google ScholarLocate open access versionFindings
  • 85 R. M. Steinman, I. S. Mellman, W. A. Muller and Z. A. Cohn, J. Cell Biol., 1983, 96, 1–27.
    Google ScholarLocate open access versionFindings
  • 86 J. R. Slotkin, L. Chakrabarti, H. N. Dai, R. S. E. Carney, T. Hirata, B. S. Bregman, G. I. Gallicano, J. G. Corbin and T. F. Haydar, Dev. Dyn., 2007, 236, 3393–3401.
    Google ScholarLocate open access versionFindings
  • 87 A. M. Derfus, W. C. W. Chan and S. N. Bhatia, Adv. Mater., 2004, 16, 961–964.
    Google ScholarLocate open access versionFindings
  • 88 Y. Ishihama and T. Funatsu, Biochem. Biophys. Res. Commun., 2009, 381, 33–38.
    Google ScholarLocate open access versionFindings
  • 89 M. J. Roberti, M. Morgan, G. Menendez, L. I. Pietrasanta, T. M. Jovin and E. A. Jares-Erijman, J. Am. Chem. Soc., 2009, 131, 8102–8107.
    Google ScholarLocate open access versionFindings
  • 90 K. Yum, S. Na, Y. Xiang, N. Wang and M. F. Yu, Nano Lett., 2009, 9, 2193–2198.
    Google ScholarLocate open access versionFindings
  • 91 S. Courty, C. Luccardini, Y. Bellaiche, G. Cappello and M. Dahan, Nano Lett., 2009, 6, 1491–1495.
    Google ScholarFindings
  • 92 S. R. Nelson, M. Y. Ali, K. M. Trybus and D. M. Warshaw, Biophys. J., 2009, 97, 509–518.
    Google ScholarLocate open access versionFindings
  • 93 J. Zabner, Al. J. Fasbender, T. Moninger, K. A. Poellinger and M. Welsh, J. Biol. Chem., 1995, 32, 18997–19007.
    Google ScholarLocate open access versionFindings
  • 94 P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold and M. Danielsen, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 7413–7417.
    Google ScholarLocate open access versionFindings
  • 95 S. C. Hsieh, F. F. Wang, C. S. Lin, Y. J. Chen, S. C. Hung and Y. J. Wang, Biomaterials, 2006, 27, 1656–1664.
    Google ScholarFindings
  • 96 B. C. Lagerholm, M. M. Wang, L. A. Ernst, D. H. Ly, H. J. Liu, M. P. Bruchez and A. S. Waggoner, Nano Lett., 2004, 4, 2019–2022.
    Google ScholarFindings
  • 97 T. T. Zhang, J. L. Stilwell, D. Gerion, L. H. Ding, O. Elboudwarej, P. A. Cooke, J. W. Gray, A. P. Alivisatos and F. F. Chen, Nano Lett., 2006, 6, 800–808.
    Google ScholarLocate open access versionFindings
  • 98 H. Duan and S. Nie, J. Am. Chem. Soc., 2007, 129, 3333–3338.
    Google ScholarLocate open access versionFindings
  • 99 H. Mok, J. W. Park and T. G. Park, Bioconjugate Chem., 2008, 19, 797–801.
    Google ScholarLocate open access versionFindings
  • 100 M. V. Yezhelyev, L. F. Qi, R. M. O’Regan, S. Nie and X. H. Gao, J. Am. Chem. Soc., 2008, 130, 9006–9012.
    Google ScholarLocate open access versionFindings
  • 101 A. Nair, J. H. Shen, P. Thevenot, L. Zou, T. Cai, Z. B. Hu and L. P. Tang, Nanotechnology, 2008, 19, 485102.
    Google ScholarFindings
  • 102 B. Y. S. Kim, W. Jiang, J. Oreopoulos, C. M. Yip, J. T. Rutka and W. C. W. Chan, Nano Lett., 2008, 8, 3887–3892.
    Google ScholarLocate open access versionFindings
  • 103 L. F. Qi and X. H. Gao, ACS Nano, 2008, 2, 1403–1410.
    Google ScholarFindings
  • 104 J. Silver and W. Ou, Nano Lett., 2005, 5, 1445–1449.
    Google ScholarFindings
  • 105 J. B. Delehanty, I. L. Medintz, T. Pons, F. M. Brunel, P. E. Dawson and H. Mattoussi, Bioconjugate Chem., 2006, 17, 920–927.
    Google ScholarLocate open access versionFindings
  • 106 Y. Zhang, M. K. So and J. H. Rao, Nano Lett., 2006, 6, 1988–1992.
    Google ScholarFindings
  • 107 I. L. Medintz, T. Pons, J. B. Delehanty, K. Susumu, F. M. Brunel, P. E. Dawson and H. Mattoussi, Bioconjugate Chem., 2008, 19, 1785–1795.
    Google ScholarLocate open access versionFindings
  • 108 G. Ruan, A. Agrawal, A. I. Marcus and S. Nie, J. Am. Chem. Soc., 2007, 129, 14759–14766.
    Google ScholarLocate open access versionFindings
  • 109 Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng and B. Zou, Bioconjugate Chem., 2008, 19, 421–427.
    Google ScholarLocate open access versionFindings
  • 110 C. C. Berry, Nanomedicine, 2008, 3, 357–365.
    Google ScholarFindings
  • 111 B. Chen, Q. L. Liu, Y. L. Zhang, L. Xu and X. H. Fang, Langmuir, 2008, 24, 11866–11871.
    Google ScholarFindings
  • 112 S. M. Rozenzhak, M. P. Kadakia, T. M. Caserta, T. R. Westbrook, M. O. Stone and R. R. Naik, Chem. Commun., 2005, 2217–2219.
    Google ScholarLocate open access versionFindings
  • 113 A. Hoshino, N. Manabe, K. Fujioka, S. Hanada, M. Yasuhara, A. Kondo and K. Yamamoto, Nanotechnology, 2008, 19, 495102.
    Google ScholarFindings
  • 114 V. Biju, D. Muraleedharan, K. Nakayama, Y. Shinohara, T. Itoh, Y. Baba and M. Ishikawa, Langmuir, 2007, 23, 10254–10261.
    Google ScholarFindings
  • 115 A. Anas, T. Okuda, N. Kawashima, K. Nakayama, T. Itoh, M. Ishikawa and V. Biju, ACS Nano, 2009, 3, 2419–2429.
    Google ScholarLocate open access versionFindings
  • 116 C. Walther, K. Meyer, R. Rennert and I. Neundorf, Bioconjugate Chem., 2008, 19, 2346–2356.
    Google ScholarLocate open access versionFindings
  • 117 A. Jayagopal, Y. R. Su, J. L. Blakemore, M. F. Linton, S. Fazio and F. R. Haselton, Nanotechnology, 2009, 20, 165102.
    Google ScholarFindings
  • 118 W. J. Parak, R. Boudreau, M. Le Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C. Williams, A. P. Alivisatos and C. Larabell, Adv. Mater., 2002, 14, 882–885.
    Google ScholarLocate open access versionFindings
  • 119 K. Hanaki, A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi and K. Yamamoto, Biochem. Biophys. Res. Commun., 2003, 302, 496–501.
    Google ScholarLocate open access versionFindings
  • 120 A. M. Derfus, W. C. W. Chan and S. N. Bhatia, Nano Lett., 2004, 4, 11–18.
    Google ScholarFindings
  • 121 F. Li, Z. P. Zhang, J. Peng, Z. Q. Cui, D. W. Pang, K. Li, H. P. Wei, Y. F. Zhou, J. K. Wen and X. E. Zhang, Small, 2009, 5, 718–726.
    Google ScholarFindings
  • 122 Y. H. Sun, Y. S. Liu, P. T. Vernier, C. H. Liang, S. Y. Chong, L. Marcu and M. A. Gundersen, Nanotechnology, 2006, 17, 4469–4476.
    Google ScholarFindings
  • 123 M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science, 1998, 281, 2013–2016.
    Google ScholarFindings
  • 124 Y. Xu, Q. B. Wang, P. He, Q. M. Dong, F. Liu, Y. Liu, L. Lin, H. Yan and X. H. Zhao, Adv. Mater., 2008, 20, 3468–3473.
    Google ScholarLocate open access versionFindings
  • 125 U. Hasegawa, S. I. M. Nomura, S. C. Kaul, T. Hirano and K. Akiyoshi, Biochem. Biophys. Res. Commun., 2005, 331, 917–921.
    Google ScholarLocate open access versionFindings
  • 126 M. Xie, H. H. Liu, P. Chen, Z. L. Zhang, X. H. Wang, Z. X. Xie, Y. M. Du, B. Q. Pan and D. W. Pang, Chem. Commun., 2005, 5518–5520.
    Google ScholarLocate open access versionFindings
  • 127 P. M. A. de Farias, B. S. Santos, F. D. Menezes, A. G. Brasil Jr., R. Ferreira, M. A. Motta, A. G. Castro-Neto, A. A. S. Vieira, D. C. N. Silva, A. Fontes and C. L. Cesar, Appl. Phys. A, 2007, 89, 957–961.
    Google ScholarLocate open access versionFindings
  • 128 J. O. Winter, T. Y. Liu, B. A. Korgel and C. E. Schmidt, Adv. Mater., 2001, 13, 1673–1677.
    Google ScholarLocate open access versionFindings
  • 129 M. Howarth, W. H. Liu, S. Puthenveetil, Y. Zheng, L. F. Marshall, M. M. Schmidt, K. D. Wittrup, M. G. Bawendi and A. Y. Ting, Nat. Methods, 2008, 5, 397–399.
    Google ScholarLocate open access versionFindings
  • 130 K. C. Weng, C. O. Noble, B. Papahadjopoulos-Sterberg, F. F. Chen, D. C. Drummond, D. B. Kirpotin, D. Wang, Y. K. Hom, B. Hann and J. W. Park, Nano Lett., 2008, 8, 2851–2857.
    Google ScholarLocate open access versionFindings
  • 131 M. V. Yezhelyev, A. Al-Hajj, C. Morris, A. I. Marcus, T. Liu, M. Lewis, C. Cohen, P. Zrazhevskiy, J. W. Simons, A. Rogatko, S. Nie, X. Gao and R. M. O’Regan, Adv. Mater., 2007, 19, 3146–3151.
    Google ScholarLocate open access versionFindings
  • 132 D. H. Huang, L. Su, X. H. Peng, H. Z. Zhang, F. R. Khuri, D. M. Shin and Z. Chen, Nanotechnology, 2009, 20, 225102.
    Google ScholarFindings
  • 133 B. Barat, S. J. Sirk, K. E. McCabe, J. Q. Li, E. J. Lepin, R. Remenyi, A. L. Koh, T. Olafsen, S. S. Gambhir, S. Weiss and A. M. Wu, Bioconjugate Chem., 2009, 20, 1474–1481.
    Google ScholarLocate open access versionFindings
  • 134 Y. T. Lim, M. Y. Cho, Y. W. Noh, J. W. Chung and B. H. Chung, Nanotechnology, 2009, 20, 475102.
    Google ScholarFindings
  • 135 H. Zhang, D. Sachdev, C. Wang, A. Hubel, M. Gaillard-Kelly and D. Yee, Breast Cancer Res. Treat., 2009, 114, 277–285.
    Google ScholarLocate open access versionFindings
  • 136 N. Kawashima, K. Nakayama, K. Itoh, T. Itoh, M. Ishikawa and V. Biju, Chem.–Eur. J., 2010, 16, 1186–1192.
    Google ScholarFindings
  • 137 M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau and A. Triller, Science, 2003, 302, 442–445.
    Google ScholarFindings
  • 138 C. Bouzigues, M. Morel, A. Triller and M. Dahan, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 11251–11256.
    Google ScholarLocate open access versionFindings
  • 139 J. M. Crane and A. S. Verkman, Biophys. J., 2008, 94, 702–713.
    Google ScholarFindings
  • 140 G. Iyer, X. Michalet, Y. P. Chang, F. F. Pinaud, S. E. Matyas, G. Payne and S. Weiss, Nano Lett., 2008, 8, 4618–4623.
    Google ScholarLocate open access versionFindings
  • 141 H. F. Chen, I. Titushkin, M. Stroscio and M. Cho, Biophys. J., 2007, 92, 1399–1408.
    Google ScholarFindings
  • 142 M. Howarth, K. Takao, Y. Hayashi and A. Y. Ting, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 7583–7588.
    Google ScholarLocate open access versionFindings
  • 143 I. Chen, Y. A. Choi and A. Y. Ting, J. Am. Chem. Soc., 2007, 129, 6619–6625.
    Google ScholarLocate open access versionFindings
  • 144 V. Roullier, S. Clarke, C. You, F. Pinaud, G. Gouzer, D. Schaible, V. Marchi-Artzner, J. Piehler and M. Dahan, Nano Lett., 2009, 9, 1228–1234.
    Google ScholarLocate open access versionFindings
  • 145 R. Bonasio, C. V. Carman, E. Kim, P. T. Sage, K. R. Love, T. R. Mempel, T. A. Springer and U. H. von Andrian, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 14753–14758.
    Google ScholarLocate open access versionFindings
  • 146 J. Kim, H. Y. Park, J. Kim, J. Ryu, D. Y. Kwon, R. Grailhe and R. Song, Chem. Commun., 2008, 1910–1912.
    Google ScholarLocate open access versionFindings
  • 147 A. Dif, F. Boulmedais, M. Pinot, V. Roullier, M. Baudy-Floc’h, F. M. Coquelle, S. Clarke, P. Neveu, F. Vignaux, R. Le Borgne, M. Dahan, Z. Gueroui and V. Marchi-Artzner, J. Am. Chem. Soc., 2009, 131, 14738–14746.
    Google ScholarLocate open access versionFindings
  • 148 M. K. So, H. Q. Yao and J. H. Rao, Biochem. Biophys. Res. Commun., 2008, 374, 419–423.
    Google ScholarLocate open access versionFindings
  • 149 W. J. M. Mulder, R. Koole, R. J. Brandwijk, G. Storm, P. T. K. Chin, G. J. Strijkers, C. D. Donega, K. Nicolay and A. W. Griffioen, Nano Lett., 2006, 6, 1–6.
    Google ScholarLocate open access versionFindings
  • 150 F. Pinaud, D. King, H. P. Moore and S. Weiss, J. Am. Chem. Soc., 2004, 126, 6115–6123.
    Google ScholarLocate open access versionFindings
  • 151 D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman and T. M. Jovin, Nat. Biotechnol., 2004, 22, 198–203.
    Google ScholarLocate open access versionFindings
  • 152 P. Diagaradjane, J. M. Orenstein-Cardona, N. E. Colon-Casasnovas, A. Deorukhkar, S. Shentu, N. Kuno, D. L. Schwartz, J. G. Gelovani and S. Krishnan, Clin. Cancer Res., 2008, 14, 731–741.
    Google ScholarLocate open access versionFindings
  • 153 T. Q. Vu, R. Maddipati, T. A. Blute, B. J. Nehilla, L. Nusblat and T. A. Desai, Nano Lett., 2005, 5, 603–607.
    Google ScholarFindings
  • 154 S. S. Rajan and T. Q. Vu, Nano Lett., 2006, 6, 2049–2059.
    Google ScholarFindings
  • 155 S. S. Rajan, H. Y. Liu and T. Q. Vu, ACS Nano, 2008, 2, 1153–1166.
    Google ScholarFindings
  • 156 E. Saint-Michel, G. Giannone, D. Choquet and O. Thoumine, Biophys. J., 2009, 97, 480–489.
    Google ScholarLocate open access versionFindings
  • 157 S. H. Bhang, N. Won, T. J. Lee, H. Jin, J. Nam, J. Park, H. Chung, H. S. Park, Y. E. Sung, S. K. Hahn, B. S. Kim and S. Kim, ACS Nano, 2009, 3, 1389–1398.
    Google ScholarLocate open access versionFindings
  • 158 X. C. Chen, Y. L. Deng, Y. Lin, D. W. Pang, H. Qing, F. Qu and H. Y. Xie, Nanotechnology, 2008, 19, 235105.
    Google ScholarFindings
  • 159 T. C. Chu, F. Shieh, L. A. Lavery, M. Levy, R. RichardsKortum, B. A. Korgel and A. D. Ellington, Biosens. Bioelectron., 2006, 21, 1859–1866.
    Google ScholarLocate open access versionFindings
  • 160 N. Anikeeva, T. Lebedeva, A. R. Clapp, E. R. Goldman, M. L. Dustin, H. Mattoussi and Y. Sykulev, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 16846–16851.
    Google ScholarLocate open access versionFindings
  • 161 R. L. Orndorff and S. J. Rosenthal, Nano Lett., 2009, 9, 2589–2599.
    Google ScholarFindings
  • 162 V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer and O. C. Farokhzad, Nano Lett., 2007, 7, 3065–3070.
    Google ScholarLocate open access versionFindings
  • 163 G. A. F. van Tilborg, W. J. M. Mulder, P. T. K. Chin, G. Storm, C. P. Reutelingsperger, K. Nicolay and G. J. Strijkers, Bioconjugate Chem., 2006, 17, 865–868.
    Google ScholarLocate open access versionFindings
  • 164 S. Le Gac, I. Vermes and A. van den Berg, Nano Lett., 2006, 6, 1863–1869.
    Google ScholarFindings
  • 165 F. Koeppel, J. K. Jaiswal and S. M. Simon, Nanomedicine, 2007, 2, 71–78.
    Google ScholarFindings
  • 166 W. B. Tan, S. Jiang and Y. Zhang, Biomaterials, 2007, 28, 1565–1571.
    Google ScholarFindings
  • 167 H. Tada, H. Higuchi, T. M. Watanabe and N. Ohuchi, Cancer Res., 2007, 67, 1138–1144.
    Google ScholarLocate open access versionFindings
  • 168 A. Cambi, D. S. Lidke, D. J. Arndt-Jovin, C. G. Figdor and T. M. Jovin, Nano Lett., 2007, 7, 970–977.
    Google ScholarLocate open access versionFindings
  • 169 J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. L. He, A. Maitra and P. N. Prasad, J. Phys. Chem. B, 2007, 111, 6969–6972.
    Google ScholarLocate open access versionFindings
  • 170 K. T. Yong, H. Ding, I. Roy, W. C. Law, E. J. Bergey, A. Maitra and P. N. Prasad, ACS Nano, 2009, 3, 502–510.
    Google ScholarFindings
  • 171 L. D. Chen, J. Liu, X. F. Yu, M. He, X. F. Pei, Z. Y. Tang, Q. Q. Wang, D. W. Pang and Y. Li, Biomaterials, 2008, 29, 4170–4176.
    Google ScholarFindings
  • 172 M. Bottini, F. D’Annibale, A. Magrini, F. Cerignoli, Y. Arimura, M. I. Dawson, E. Bergamaschi, N. Rosato, A. Bergamaschi and T. Mustelin, Int. J. Nanomed., 2007, 2, 227–233.
    Google ScholarLocate open access versionFindings
  • 173 C. Tekle, B. van Deurs, K. Sandvig and T. G. Iversen, Nano Lett., 2008, 8, 1858–1865.
    Google ScholarFindings
  • 174 R. Koole, M. M. van Schooneveld, J. Hilhorst, K. Castermans, D. P. Cormode, G. J. Strijkers, C. D. Donega, D. Vanmaekelbergh, A. W. Griffioen, K. Nicolay, Z. A. Fayad, A. Meijerink and W. J. M. Mulder, Bioconjugate Chem., 2008, 19, 2471–2479.
    Google ScholarLocate open access versionFindings
  • 175 B. X. Cui, C. B. Wu, L. Chen, A. Ramirez, E. L. Bearer, W. P. Li, W. C. Mobley and S. Chu, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 13666–13671.
    Google ScholarLocate open access versionFindings
  • 176 X. L. Gao, T. Wang, B. X. Wu, J. Chen, J. Y. Chen, Y. Yue, N. Dai, H. Z. Chen and X. G. Jiang, Biochem. Biophys. Res. Commun., 2008, 377, 35–40.
    Google ScholarLocate open access versionFindings
  • 177 M. H. Ko, S. Kim, W. J. Kang, J. H. Lee, H. Kang, S. H. Moon, D. W. Hwang, H. Y. Ko and D. S. Lee, Small, 2009, 5, 1207–1212.
    Google ScholarFindings
  • 178 L. S. Shah, P. A. Clark, E. K. Moioli, M. A. Stroscio and J. J. Mao, Nano Lett., 2007, 7, 3071–3079.
    Google ScholarLocate open access versionFindings
  • 179 O. Lieleg, M. Lopez-Garcia, C. Semmrich, J. Auernheimer, H. Kessler and A. R. Bausch, Small, 2007, 3, 1560–1565.
    Google ScholarFindings
  • 180 S. K. Chakraborty, J. A. J. Fitzpatrick, J. A. Phillippi, S. Andreko, A. S. Waggoner, M. P. Bruchez and B. Ballou, Nano Lett., 2007, 7, 2618–2626.
    Google ScholarLocate open access versionFindings
  • 181 I. Chung, R. Akita, R. Vandlen, D. Toomre, J. Schlessinger and I. Mellmann, Nature, 2010, DOI: 10.1038/nature08827.
    Locate open access versionFindings
Your rating :
0

 

Tags
Comments
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科