AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
Biosensors technology is a field in the quest for innovative approaches to analysis

Amperometric biosensors for clinical and therapeutic drug monitoring: a review.

JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, no. 1-2 (1999): 47-53

被引用292|浏览10
WOS EI
下载 PDF 全文
引用
微博一下

摘要

The coupling of enzymes and electrode transducers permits the rapid and simple determination of endogeneous compounds and therapeutic drugs in clinical samples. New developments in the operation, miniaturization and microfabrication of electrochemical biosensors offer exciting possibilities for biomedical and pharmaceutical analysis. This...更多

代码

数据

0
简介
  • Over the past two decades the authors have witnessed a tremendous amount of activity in the area of biosensors.
  • In potentiometric devices the analytical information is obtained by converting the biorecognition process into a potential signal, whereas the amperometric types are based on monitoring the current associated with oxidation or reduction of an electroactive species involved in the recognition process.
  • Such coupling of enzymes and amperometric electrodes permits the rapid, simple and direct determination of various metabolites and therapeutic drugs in biological fluids in connection with single-use, intermittent-use or continuous-monitoring applications.
重点内容
  • Over the past two decades we have witnessed a tremendous amount of activity in the area of biosensors
  • The major processes involved in any biosensor system are analyte recognition, signal transduction and readout
  • Useful amperometric enzyme electrodes have been developed for the determination of bilirubin [22], galactose [23], amino acids [24] or peptides [25], in connection to immobilized bilirubin oxidase, galactose oxidase, amino acid oxidase, and tyrosinase, respectively
  • Various commercial strips for self-monitoring of blood glucose rely on single-use printed carbon electrodes in connection with immobilized
  • A recent example is the development of a miniaturized total analytical systems (mTAS) system for on-line monitoring of lactate and glucose in biological systems, based on integrated microdialysis sampling and photolithographically-prepared lactate and glucose electrodes ([35], Fig. 4)
  • Biosensors technology is a field in the quest for innovative approaches to analysis
结果
  • The selection of the working electrode transducer is strongly dependent upon its reactivity towards the peroxide and NADH products, as well as upon other considerations, including the background current, interfering reactions, surface reproducibility, mechanical properties, and cost.
  • [8] reported on a novel approach for modifying glucose oxidase for facilitating the electron transfer between its redox center and the electrode surface (Fig. 1C).
  • The above problems of oxidase sensors can be eliminated through a direct electron transfer between the enzyme redox center and the electrode surface.
  • The resulting three-dimensional redox – polymer/enzyme networks offer high current outputs and stabilize the mediator to the electrode surfaces.
  • Several important metabolites and drugs can be readily detected in connection with amperometric biosensors based on the judicious selection of the immobilized enzyme.
  • Useful amperometric enzyme electrodes have been developed for the determination of bilirubin [22], galactose [23], amino acids [24] or peptides [25], in connection to immobilized bilirubin oxidase, galactose oxidase, amino acid oxidase, and tyrosinase, respectively.
  • These include the use of the enzyme aryl acylamidase for assays of acetaminophen in connection with the detection of the liberated aminophenol [26], the use of theophylline oxidase and a ferrocyanide mediator for the biosensing of theophylline [27], an indirect enzymatic amplification strategy for chlorpromazine [28], or the immobilization of salicylate hydroxylase for the detection of salicylate in the presence of NADH and dissolved oxygen [29].
  • Various commercial strips for self-monitoring of blood glucose rely on single-use printed carbon electrodes in connection with immobilized
结论
  • A recent example is the development of a mTAS system for on-line monitoring of lactate and glucose in biological systems, based on integrated microdialysis sampling and photolithographically-prepared lactate and glucose electrodes ([35], Fig. 4).
  • The success of pocket-sized blood glucose monitors has stimulated tremendous interest in new devices offering a panel of blood tests at the patient’s side or valuable real-time information on key metabolites or drugs.
  • On-going fundamental studies on mediated and direct electron-transfer electrochemistry, on new sensing principles, and on enzyme stabilization, coupled to extensive commercial efforts, should have a tremendous impact on point-of-care clinical testing, and upon biomedicine, in general.
引用论文
  • A.P. Turner, I. Karube, G.S. Wilson (Eds.), Biosensors: Fundamentals and Applications, Oxford University Press, Oxford, 1987.
    Google ScholarLocate open access versionFindings
  • R.F. Taylor, J.S. Schultz (Eds.), Handbook of Chemical and Biological Sensors, Institute of Physics Publishing, Bristol, 1996.
    Google ScholarLocate open access versionFindings
  • J. Wang, Analytical Electrochemistry, VCH, New York, 1994.
    Google ScholarFindings
  • J. Wang, F. Lu, J. Am. Chem. Soc. 120 (1998) 1048.
    Google ScholarLocate open access versionFindings
  • M. Lobo, A. Miranda, P. Tunon, Electroanalysis 9 (1997)
    Google ScholarLocate open access versionFindings
  • J. Frew, H.A. Hill, Anal. Chem. 59 (1987) 933A.
    Google ScholarLocate open access versionFindings
  • T. Ohara, R. Rajogopalan, A. Heller, Anal. Chem. 66 (1994) 2451.
    Google ScholarLocate open access versionFindings
  • I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, J. Am. Chem. Soc. 118 (1996) 10321.
    Google ScholarLocate open access versionFindings
  • I. Willner, E. Katz, B. Willner, Electroanalysis 9 (1997)
    Google ScholarLocate open access versionFindings
  • M. Collison, M.E. Meyerhoff, Anal. Chem. 62 (1990)
    Google ScholarLocate open access versionFindings
  • P. Vadgama, M. Desai, P. Crump, Electroanalysis 3 (1991) 597.
    Google ScholarFindings
  • G. Reach, G.S. Wilson, Anal. Chem. 64 (1992) 381A.
    Google ScholarLocate open access versionFindings
  • S. Jaffari, A.P. Turner, Physiol. Meas. 16 (1995) 1.
    Google ScholarFindings
  • Y. Zhang, G.S. Wilson, Anal. Chim. Acta 281 (1993) 513.
    Google ScholarLocate open access versionFindings
  • M. Kyrolainen, H. Hakanson, R. Ekroth, B. Mattiasson, Anal. Chim. Acta 279 (1993) 149.
    Google ScholarLocate open access versionFindings
  • C. Meyerhoff, F. Bischof, F. Mennel, F. Sternberg, J. Bican, E. Pfeiffer, Biosens. Bioelectron. 8 (1993) 409.
    Google ScholarLocate open access versionFindings
  • D. Baker, D. Gough, Anal. Chem. 67 (1995) 1536.
    Google ScholarLocate open access versionFindings
  • M. Madaras, I. Popesco, S. Ufer, R. Buck, Anal. Chim. Acta 319 (1996) 335.
    Google ScholarLocate open access versionFindings
  • G. Khan, W. Wernet, Anal. Chim. Acta 351 (1997) 151.
    Google ScholarLocate open access versionFindings
  • Y. Hahn, C.L. Olson, Anal. Chem. 51 (1979) 444.
    Google ScholarLocate open access versionFindings
  • A. Crumbliss, J. Stonehuerner, R. Henkens, J. Zhao, J. O’Daly, Biosens. Bioelectron. 8 (1993) 331.
    Google ScholarLocate open access versionFindings
  • J. Wang, M. Ozsoz, Electroanalysis 2 (1990) 647.
    Google ScholarFindings
  • P. Taylor, E. Kmetec, J. Johnson, Anal. Chem. 49 (1977)
    Google ScholarLocate open access versionFindings
  • V. Kacanickle, K. Johansson, G. MarkoVarga, L. Gorton, G. Jonsson-Petterson, E. Csoregi, Electroanalysis 6 (1994) 381.
    Google ScholarLocate open access versionFindings
  • H. Bramwell, A. Cass, P. Gibbs, M. Green, Analyst 115 (1990) 185.
    Google ScholarLocate open access versionFindings
  • A. Eremenko, A. Makower, C. Bauer, I. Kurochkin, F. Scheller, Electroanalysis 9 (1997) 288.
    Google ScholarLocate open access versionFindings
  • J. Wang, E. Dempsey, M. Ozsos, M. Smyth, Analyst 116 (1991) 997.
    Google ScholarLocate open access versionFindings
  • T. Moore, G. Nam, L. Pipes, L. Coury, Anal. Chem. 66 (1994) 3158.
    Google ScholarLocate open access versionFindings
  • J. Frew, M. Green, Anal. Proc. 26 (1989) 334.
    Google ScholarLocate open access versionFindings
  • M. Neumayr, G. Sontag, F. Pittner, Anal. Chim. Acta 305 (1995) 26.
    Google ScholarLocate open access versionFindings
  • J. Wang, Y. Lin, L. Chen, Analyst 118 (1993) 277.
    Google ScholarLocate open access versionFindings
  • B. Lewis, Clin. Chem. 38 (1992) 2093.
    Google ScholarLocate open access versionFindings
  • S. Sprules, J. Hart, S. Wring, R. Pittson, Anal. Chim. Acta 304 (1995) 17.
    Google ScholarLocate open access versionFindings
  • E. Jacobs, E. Vadasdi, L. Sarkozi, N. Colman, Clin. Chem. 39 (1993) 1069.
    Google ScholarLocate open access versionFindings
  • E. Dempsey, D. Diamond, M. Smyth, et al., Anal. Chim. Acta 346 (1997) 341.
    Google ScholarLocate open access versionFindings
作者
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科