Purinergic signaling in cochleovestibular hair cells and afferent neurons

Purinergic Signalling(2010)

引用 11|浏览7
暂无评分
摘要
Purinergic signaling in the mammalian cochleovestibular hair cells and afferent neurons is reviewed. The scope includes P2 and P1 receptors in the inner hair cells (IHCs) of the cochlea, the type I spiral ganglion neurons (SGNs) that convey auditory signals from IHCs, the vestibular hair cells (VHCs) in the vestibular end organs (macula in the otolith organs and crista in the semicircular canals), and the vestibular ganglion neurons (VGNs) that transmit postural and rotatory information from VHCs. Various subtypes of P2X ionotropic receptors are expressed in IHCs as well as P2Y metabotropic receptors that mobilize intracellular calcium. Their functional roles still remain speculative, but adenosine 5′-triphosphate (ATP) could regulate the spontaneous activity of the hair cells during development and the receptor potentials of mature hair cells during sound stimulation. In SGNs, P2Y metabotropic receptors activate a nonspecific cation conductance that is permeable to large cations as NMDG + and TEA + . Remarkably, this depolarizing nonspecific conductance in SGNs can also be activated by other metabotropic processes evoked by acetylcholine and tachykinin. The molecular nature and the role of this depolarizing channel are unknown, but its electrophysiological properties suggest that it could lie within the transient receptor potential channel family and could regulate the firing properties of the afferent neurons. Studies on the vestibular partition (VHC and VGN) are sparse but have also shown the expression of P2X and P2Y receptors. There is still little evidence of functional P1 (adenosine) receptors in the afferent system of the inner ear.
更多
查看译文
关键词
ATP,Adenosine,Mammalian,Inner ear,Cochlea,Vestibular organ,Inner hair cell,Vestibular hair cell,Spiral ganglion,Vestibular ganglion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要