Analytical and experimental characterization of a miniature calorimetric sensor in pulsatile flow

JOURNAL OF FLUID MECHANICS(2011)

引用 6|浏览5
暂无评分
摘要
The behaviour of a miniature calorimetric sensor, which is under consideration for catheter-based coronary-artery-flow assessment, is investigated in both steady and pulsatile tube flows. The sensor is composed of a heating element operated at constant power and two thermopiles that measure flow-induced temperature differences over the sensor surface. An analytical sensor model is developed, which includes axial heat conduction in the fluid and a simple representation of the solid wall, assuming a quasi-steady sensor response to the pulsatile flow. To reduce the mathematical problem, described by a two-dimensional advection-diffusion equation, a spectral method is applied. A Fourier transform is then used to solve the resulting set of ordinary differential equations and an analytical expression for the fluid temperature is found. To validate the analytical model, experiments with the sensor mounted in a tube have been performed in steady and pulsatile water flows with various amplitudes and Strouhal numbers. Experimental results are generally in good agreement with theory and show a quasi-steady sensor response in the coronary-flow regime. The model can therefore be used to optimize the sensor design for coronary-flow assessment.
更多
查看译文
关键词
biomedical flows,blood flow,boundary layers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要