Firing properties of spherical bushy cells in the anteroventral cochlear nucleus of the gerbil

Hearing Research(1997)

引用 40|浏览3
暂无评分
摘要
In gerbils, spherical bushy cells (SBCs) encode low frequency sound signals into a temporal firing pattern. To investigate the support for the timing in this temporal code, we characterized the membrane electrical properties of visually identified SBCs in brainstem slices. A brief depolarizing subthreshold transient potential (TP) triggered, with relatively invariant latency, a single spike at the onset of a response to depolarizing current pulses. The activation of a subthreshold Na+-conductance, sensitive to blockade with tetrodotoxin, and a high threshold Ca2+-conductance, sensitive to blockade with Co2+ or Cd2+, accelerated the rising phase and amplified the TP. A K+-conductance, sensitive to blockade by 4-aminopyridine (4-AP, 50 μM), shaped the decay of the TP. Following a single spike, voltage-gated activation of transient and sustained K+-conductances suppressed any tendency to repetitively discharge. A reduction in either K+-conductance due to application of 4-AP or etraethylammonium (TEA, 10 mM), converted the single spike mode to repetitive firing during the depolarizing pulses. A persistent, tetrodotoxin-sensitive Na+-conductance amplified steady-state depolarizing responses. A hyperpolarization-activated conductance, greatly decreased by extracellular Cs+ (3 mM) but resistant to Ba2+ (up to 1 mM), filtered the responses to hyperpolarizing current inputs. A depolarized membrane potential promoted repetitive firing in SBCs. This state, expected in pathophysiological conditions, would corrupt the temporal code.
更多
查看译文
关键词
Cochlear nucleus,Spherical bushy cell,Membrane property,Temporal code
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要