AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
Much like Metal–organic frameworks, Covalent organic frameworks derive their pore structure from their crystal structure. Both hypercrosslinked polymers and COFs have been synthesized with hydrogen storage capacities that approach the Department of Energy goal of 6 wt%

Nanoporous polymers for hydrogen storage.

SMALL, no. 10 (2009): 1098-1111

被引用302|浏览18
WOS
下载 PDF 全文
引用
微博一下

摘要

The design of hydrogen storage materials is one of the principal challenges that must be met before the development of a hydrogen economy. While hydrogen has a large specific energy, its volumetric energy density is so low as to require development of materials that can store and release it when needed. While much of the research on hydro...更多

代码

数据

0
简介
  • The use of hydrogen as an energy carrier suitable to replace gasoline and other fossil fuels has been widely discussed as a way to sustainably fuel the civilization.
  • The authors synthesized a series of hypercrosslinked polyanilines with electron-donating amino groups inherent to their structure.[32] The resulting materials had smaller surface areas than the hypercrosslinked polystyrenes and a maximum hydrogen storage capacity of 2.2 wt% at 3 MPa and 77 K.
重点内容
  • The use of hydrogen as an energy carrier suitable to replace gasoline and other fossil fuels has been widely discussed as a way to sustainably fuel our civilization
  • This review focuses on two areas: the application of porous organic polymers to hydrogen storage and issues and trends that are common to the different types of nanoporous materials
  • Their nonreliance on kinetics in synthesis, the absence of large molecular weight atoms, and the fact that all of the edges in their aromatic rings are available for adsorption, Covalent organic frameworks (COFs) are very promising as materials for hydrogen storage
  • This review focuses on porous polymers, we will discuss these methods as they have been applied to a variety of nanoporous materials since there is an expectation that the methods used will be largely transferable between different types of porous materials
  • Much like Metal–organic frameworks (MOFs), COFs derive their pore structure from their crystal structure. Both hypercrosslinked polymers and COFs have been synthesized with hydrogen storage capacities that approach the Department of Energy (DOE) goal of 6 wt%
  • The success of these materials has demonstrated that surface area, nanopore volume, and pore size are all important to hydrogen storage
结果
  • Were able to increase the surface areas of their polymers from 1120 to 2480 m2 gÀ1.[139] Cote et al used a similar approach with their frameworks.[33] Given their flexibility, their nonreliance on kinetics in synthesis, the absence of large molecular weight atoms, and the fact that all of the edges in their aromatic rings are available for adsorption, COFs are very promising as materials for hydrogen storage.
  • Other approaches to porous polymers include templating using solid frameworks,[143] micellar imprinting,[144] and high internal phase emulsions (HIPEs).[145,146,147] The materials synthesized via these methods tend to have small surface areas and large pores and are not expected to perform well for hydrogen storage.
  • Year of publication hydrogen storage using porous carbons impregnated with a nickel catalyst.[151] Back et al synthesized palladium-doped carbon nanofibers, which adsorb 0.6 wt% at 9 MPa and room temperature.[152] While these spillover results invariably show an increase in hydrogen uptake when a nanoporous material is doped with a transition metal, they do not demonstrate hydrogen uptakes in the range desired.
  • Jhung et al used materials with crystallographically defined pore sizes to demonstrate that the enthalpy of hydrogen adsorption onto nanoporous aluminophosphates increases by a factor of 2.5 when the pore size is decreased from 1.27 Â 1.27 nm to 0.49 Â 3.0 nm.[167] Yushin et al.[73,74] have synthesized a series of porous carbons with different porous properties to show that smaller pore sizes can provide adsorption enthalpies of up to 11 kJ molÀ1 while Culp et al analyzed a series of Hofman clatharates with pores of different sizes and observed a similar trend.[168] Simultaneous interaction between hydrogen and multiple pore walls is a likely reason for this phenomenon.[38] Hydrogen can interact with only one wall at a time in a large pore, but when the pore is small, the molecule is close enough to multiple pore walls for simultaneous interactions to take place, which should lead to a higher enthalpy of adsorption.
结论
  • The generation of extremely small pores produces high adsorption enthalpies, but far this has been at the cost of reducing surface areas, pore volumes, and hydrogen storage capacities.
  • Much of the future work on nanoporous hydrogen storage materials should focus on modifying them so that they can operate reversibly at room temperature
表格
  • Table1: Surface areas and hydrogen adsorption uptakes of commercial crosslinked polymers and those synthesized via suspension polymerization
Download tables as Excel
基金
  • This work carried out in the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S Department of Energy under Contract No DE-AC0205CH11231. Keywords: hydrogen storage . metal–organic frameworks . microporous materials . nanoporous materials . polymers [1] D
引用论文
  • [6] K. J. Gross, G. J. Thomas, C. M. Jensen, J. Alloys Compd. 2002, 330, 683–690.
    Google ScholarLocate open access versionFindings
  • [7] B. Bogdanovic, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte, F. Schuth, Adv. Mater. 2003, 15, 1012–1015.
    Google ScholarLocate open access versionFindings
  • [8] W. Oelerich, T. Klassen, R. Bormann, J. Alloys Compd. 2001, 315, 237–242.
    Google ScholarLocate open access versionFindings
  • [9] K. S. W. Sing, R. T. Williams, Adsorpt. Sci. Technol. 2004, 22, 773–782.
    Google ScholarLocate open access versionFindings
  • [10] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739–1758.
    Google ScholarLocate open access versionFindings
  • [11] K. Kaneko, K. Shimizu, J. Chem. Phys. 1992, 97, 8705–8711.
    Google ScholarLocate open access versionFindings
  • [12] J. Germain, J. Hradil, J. M. J. Frechet, F. Svec, Chem. Mater. 2006, 18, 4430–4435.
    Google ScholarFindings
  • [13] D. J. Collins, H. C. Zhou, J. Mater. Chem. 2007, 17, 3154–3160.
    Google ScholarLocate open access versionFindings
  • [14] G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. 2003, 2976–2977.
    Google ScholarLocate open access versionFindings
  • [15] J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 1304–1315.
    Google ScholarLocate open access versionFindings
  • [16] A. G. Wong-Foy, A. J. Matzger, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 3494–3495.
    Google ScholarLocate open access versionFindings
  • [17] P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvag, Chem. Commun. 2006, 959–961.
    Google ScholarLocate open access versionFindings
  • [18] H. R. Moon, N. Kobayashi, M. P. Suh, Inorg. Chem. 2006, 45, 8672–8676.
    Google ScholarLocate open access versionFindings
  • [19] B. Panella, M. Hirscher, H. Putter, U. Muller, Adv. Funct. Mater. 2006, 16, 520–524.
    Google ScholarFindings
  • [20] M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung, G. Ferey, Angew. Chem, Int. Ed. 2006, 45, 8227–8231.
    Google ScholarLocate open access versionFindings
  • [21] M. Kramer, S. B. Ulrich, S. Kaskel, J. Mater. Chem. 2006, 16, 2245–2248.
    Google ScholarLocate open access versionFindings
  • [22] S. Q. Ma, D. F. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin, H. C. Zhou, J. Am. Chem. Soc. 2007, 129, 1858–1859.
    Google ScholarLocate open access versionFindings
  • [23] D. F. Sun, S. Q. Ma, Y. X. Ke, D. J. Collins, H. C. Zhou, J. Am. Chem. Soc. 2006, 128, 3896–3897.
    Google ScholarLocate open access versionFindings
  • [24] S. Q. Ma, H. C. Zhou, J. Am. Chem. Soc. 2006, 128, 11734–11735.
    Google ScholarLocate open access versionFindings
  • [25] S. Surble, F. Millange, C. Serre, T. Duren, M. Latroche, S. Bourrelly, P. L. Llewellyn, G. Ferey, J. Am. Chem. Soc. 2006, 128, 14889– 14896.
    Google ScholarLocate open access versionFindings
  • [26] B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, Angew. Chem, Int. Ed. 2005, 44, 4745–4749.
    Google ScholarLocate open access versionFindings
  • [27] X. Lin, J. H. Jia, X. B. Zhao, K. M. Thomas, A. J. Blake, G. S. Walker, N. R. Champness, P. Hubberstey, Angew. Chem, Int. Ed. 2006, 45, 7358–7364.
    Google ScholarLocate open access versionFindings
  • [28] K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186–10191.
    Google ScholarFindings
  • [29] B. L. Chen, S. Q. Ma, F. Zapata, E. B. Lobkovsky, J. Yang, Inorg. Chem. 2006, 45, 5718–5720.
    Google ScholarLocate open access versionFindings
  • [30] E. Y. Lee, M. P. Suh, Angew. Chem, Int. Ed. 2004, 43, 2798–2801.
    Google ScholarLocate open access versionFindings
  • [31] H. Chun, D. N. Dybtsev, H. Kim, K. Kim, Chem. Eur. J. 2005, 11, 3521–3529.
    Google ScholarFindings
  • [32] J. Germain, J. M. J. Frechet, F. Svec, J. Mater. Chem. 2007, 17, 4989–4997.
    Google ScholarLocate open access versionFindings
  • [33] A. P. Cote, H. M. El Kaderi, H. Furukawa, J. R. Hunt, O. M. Yaghi, J. Am. Chem. Soc. 2007, 129, 12914–12915.
    Google ScholarLocate open access versionFindings
  • [34] S. K. Bhatia, Langmuir 2006, 22, 1688–1700.
    Google ScholarFindings
  • [35] S. Bordiga, J. G. Vitillo, G. Ricchiardi, L. Regli, D. Cocina, A. Zecchina, B. Arstad, M. Bjorgen, J. Hafizovic, J. Phys. Chem. B 2005, 109, 18237–18242.
    Google ScholarLocate open access versionFindings
  • [36] E. Poirier, R. Chahine, P. Benard, L. Lafi, G. Dorval-Douville, P. A. Chandonia, Langmuir 2006, 22, 8784–8789.
    Google ScholarLocate open access versionFindings
  • [37] C. O. Arean, O. V. Manoilova, B. Bonelli, M. R. Delgado, G. T. Palomino, E. Garrone, Chem. Phys. Lett. 2003, 370, 631–635.
    Google ScholarLocate open access versionFindings
  • [38] Q. Y. Wang, J. K. Johnson, J. Chem. Phys. 1999, 110, 577–586.
    Google ScholarLocate open access versionFindings
  • [39] E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 1951, 73, 373–380.
    Google ScholarLocate open access versionFindings
  • [40] K. Kaneko, J. Membr. Sci. 1994, 96, 59–89.
    Google ScholarLocate open access versionFindings
  • [41] P. Tarazona, Phys. Rev. A 2006, 31, 2672–2679.
    Google ScholarLocate open access versionFindings
  • [42] P. Tarazona, U. M. Marconi, R. Evans, Mol. Phys. 1987, 60, 573– 595.
    Google ScholarLocate open access versionFindings
  • [43] G. Horvath, K. Kawazoe, J. Chem. Eng. Jpn. 1983, 16, 470–475.
    Google ScholarFindings
  • [44] L. S. Cheng, R. T. Yang, Chem. Eng. Sci. 1994, 49, 2599– 2609. small 2009, 5, No. 10, 1098–1111 ß 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.small-journal.com 1109
    Findings
  • [45] C. X. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov, A. F. Yee, J. Am. Chem. Soc. 1998, 120, 8380– 8391.
    Google ScholarLocate open access versionFindings
  • [46] R. B. Gregory, J. Appl. Phys. 1991, 70, 4665–4670.
    Google ScholarLocate open access versionFindings
  • [47] V. P. Shantarovich, T. Suzuki, C. He, N. Djourelov, I. B. Kevdina, V. A. Davankov, A. V. Pastukhov, Y. Ito, Positron Annihilation, Proc. Int. Conf, 13th, 2003, 2004, 445–446, 346–348.
    Google ScholarLocate open access versionFindings
  • [48] V. P. Shantarovich, T. Suzuki, C. He, V. A. Davankov, A. V. Pastukhov, M. P. Tsyurupa, K. Kondo, Y. Ito, Macromolecules 2002, 35, 9723–9729.
    Google ScholarLocate open access versionFindings
  • [49] T. R. Pauly, Y. Liu, T. J. Pinnavaia, S. J. L. Billinge, T. P. Rieker, J. Am. Chem. Soc. 1999, 121, 8835–8842.
    Google ScholarLocate open access versionFindings
  • [50] R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke, J. Non-Cryst. Solids 1998, 225, 41–45.
    Google ScholarLocate open access versionFindings
  • [51] A. S. Zalusky, R. Olayo-Valles, J. H. Wolf, M. A. Hillmyer, J. Am. Chem. Soc. 2002, 124, 12761–12773.
    Google ScholarLocate open access versionFindings
  • [52] Y. Liu, H. Kabbour, C. M. Brown, D. A. Neumann, C. C. Ahn, Langmuir 2008, 24, 4772–4777.
    Google ScholarFindings
  • [53] A. C. Dillon, M. J. Heben, Appl. Phys. A: Mater. Sci. Process. 2001, 72, 133–142.
    Google ScholarLocate open access versionFindings
  • [54] K. M. Thomas, Catal. Today 2007, 120, 389–398.
    Google ScholarLocate open access versionFindings
  • [55] N. Texier-Mandoki, J. Dentzer, T. Piquero, S. Saadallah, P. David, C. Vix-Guterl, Carbon 2004, 42, 2744–2747.
    Google ScholarLocate open access versionFindings
  • [56] R. Gadiou, N. Texier-Mandoki, T. Piquero, S. E. Saadallah, J. Parmentier, J. Patarin, P. David, C. Vix-Guterl, Adsorption 2005, 11, 823–827.
    Google ScholarLocate open access versionFindings
  • [57] M. M. Dubinin, Carbon 1989, 27, 457–467.
    Google ScholarFindings
  • [58] P. Malbrunot, D. Vidal, J. Vermesse, R. Chahine, T. K. Bose, Langmuir 1997, 13, 539–544.
    Google ScholarFindings
  • [59] K. A. Kini, W. O. Stacy, Carbon 1963, 1, 17–24.
    Google ScholarLocate open access versionFindings
  • [60] C. Springer, C. J. Major, K. Kammerme, J. Chem. Eng. Data 1969, 14, 78–82.
    Google ScholarLocate open access versionFindings
  • [61] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. Dresselhaus, Science 1999, 286, 1127–1129.
    Google ScholarLocate open access versionFindings
  • [62] P. Chen, X. Wu, J. Lin, K. L. Tan, Science 1999, 285, 91–93.
    Google ScholarLocate open access versionFindings
  • [63] R. T. Yang, Carbon 2000, 38, 623–626.
    Google ScholarFindings
  • [64] M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y. M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, J. Fink, J. Alloys Compd. 2002, 330, 654–658.
    Google ScholarLocate open access versionFindings
  • [65] X. B. Wu, P. Chen, J. Lin, K. L. Tan, Int. J. Hydrogen Energy 2000, 25, 261–265.
    Google ScholarLocate open access versionFindings
  • [66] B. Panella, M. Hirscher, S. Roth, Carbon 2005, 43, 2209–2214.
    Google ScholarFindings
  • [67] H. Takagi, H. Hatori, Y. Soneda, N. Yoshizawa, Y. Yamada, Mater. Sci. Eng, B 2004, 108, 143–147.
    Google ScholarLocate open access versionFindings
  • [68] A. Anson, M. A. Callejas, A. M. Benito, W. K. Maser, M. T. Izquierdo, B. Rubio, J. Jagiello, M. Thommes, J. B. Parra, M. T. Martinez, Carbon 2004, 42, 1243–1248.
    Google ScholarLocate open access versionFindings
  • [69] E. Terres, B. Panella, T. Hayashi, Y. A. Kim, M. Endo, J. M. Dominguez, M. Hirscher, H. Terrones, M. Terrones, Chem. Phys. Lett. 2005, 403, 363–366.
    Google ScholarLocate open access versionFindings
  • [70] R. Gadiou, S. E. Saadallah, T. Piquero, P. David, J. Parmentier, C. Vix-Guterl, Microporous Mesoporous Mater. 2005, 79, 121–128.
    Google ScholarLocate open access versionFindings
  • [71] B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390–5391.
    Google ScholarLocate open access versionFindings
  • [72] R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, Carbon 2006, 44, 2489–2497.
    Google ScholarLocate open access versionFindings
  • [73] Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J. Am. Chem. Soc. 2005, 127, 16006–16007.
    Google ScholarLocate open access versionFindings
  • [74] G. Yushin, R. Dash, J. Jagiello, J. E. Fischer, Y. Gogotsi, Adv. Funct. Mater. 2006, 16, 2288–2293.
    Google ScholarFindings
  • [75] Y. Gogotsi, A. Nikitin, H. H. Ye, W. Zhou, J. E. Fischer, Y. Bo, H. C. Foley, M. W. Barsoum, Nat. Mater. 2003, 2, 591–594.
    Google ScholarLocate open access versionFindings
  • [76] Z. X. Yang, Y. D. Xia, R. Mokaya, J. Am. Chem. Soc. 2007, 129, 1673–1679.
    Google ScholarLocate open access versionFindings
  • [77] A. Pacula, R. Mokaya, J. Phys. Chem. C 2008, 112, 2764–2769.
    Google ScholarLocate open access versionFindings
  • [78] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, Science 2003, 300, 1127–1129.
    Google ScholarLocate open access versionFindings
  • [79] J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi, J. Am. Chem. Soc. 2004, 126, 5666–5667.
    Google ScholarLocate open access versionFindings
  • [80] B. Panella, M. Hirscher, Adv. Mater. 2005, 17, 538–541.
    Google ScholarFindings
  • [81] S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, J. Am. Chem. Soc. 2007, 129, 14176–14177.
    Google ScholarLocate open access versionFindings
  • [82] H. Furukawa, M. A. Miller, O. M. Yaghi, J. Mater. Chem. 2007, 17, 3197–3204.
    Google ScholarLocate open access versionFindings
  • [83] S. S. Kaye, J. R. Long, J. Am. Chem. Soc. 2005, 127, 6506–6507.
    Google ScholarLocate open access versionFindings
  • [84] S. S. Kaye, J. R. Long, Catal. Today 2007, 120, 311–316.
    Google ScholarLocate open access versionFindings
  • [85] M. Dinca, W. S. Han, Y. Liu, A. Dailly, C. M. Brown, J. R. Long, Angew. Chem, Int. Ed. 2007, 46, 1419–1422.
    Google ScholarLocate open access versionFindings
  • [86] M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, J. R. Long, J. Am. Chem. Soc. 2006, 128, 16876–16883.
    Google ScholarLocate open access versionFindings
  • [87] W. Zhou, W. Hui, T. Yildirim, J. Am. Chem. Soc. 2008, 15268–15269.
    Google ScholarLocate open access versionFindings
  • [88] S. J. Cho, S. S. Kwang, T. H. Kim, K. Choo, Prepr. Symp. - Am. Chem. Soc., Div. Fuel Chem. 2002, 47, 790–917.
    Google ScholarLocate open access versionFindings
  • [89] B. Panella, L. Kossykh, U. Dettlaff-Weglikowsa, M. Hirscher, G. Zerbi, S. Roth, Synth. Met. 2005, 151, 208–210.
    Google ScholarFindings
  • [90] P. C. Deb, L. D. Rajput, P. K. Singh, J. Appl. Polym. Sci. 2007, 104, 297–303.
    Google ScholarLocate open access versionFindings
  • [91] S. Virji, R. B. Kaner, J. Phys. Chem. B 2006, 110, 22266–22270.
    Google ScholarLocate open access versionFindings
  • [92] J. Seidl, J. Malinsky, K. Dusek, W. Heitz, Adv. Polym. Sci. 1967, 5, 113–213.
    Google ScholarLocate open access versionFindings
  • [93] T. Rohr, S. Knaus, H. Gruber, D. C. Sherrington, Macromolecules 2002, 35, 97–105.
    Google ScholarLocate open access versionFindings
  • [94] M. C. Maillardterrier, Eur. Polym. J. 1984, 20, 113–118.
    Google ScholarFindings
  • [95] A. K. Nyhus, S. Hagen, J. Polym. Sci, Part A: Polym. Chem. 1999, 37, 3973–3990.
    Google ScholarLocate open access versionFindings
  • [96] O. Okay, Prog. Polym. Sci. 2000, 25, 711–779.
    Google ScholarLocate open access versionFindings
  • [97] A. Guyot, M. Bartholin, Prog. Polym. Sci. 2008, 8, 277–331.
    Google ScholarLocate open access versionFindings
  • [98] D. C. Sherrington, Chem. Commun. 1998, 2275–2286.
    Google ScholarFindings
  • [99] W. H. Li, H. D. H. Stover, J. Polym. Sci, Part A: Polym. Chem. 1998, 36, 1543–1551.
    Google ScholarLocate open access versionFindings
  • [100] C. M. Cheng, F. J. Micale, J. W. Vanderhoff, M. S. El Aasser, J. Polym. Sci, Part A: Polym. Chem. 1992, 30, 235–244.
    Google ScholarLocate open access versionFindings
  • [101] F. Svec, J. M. J. Frechet, Anal. Chem. 1992, 54, 820–822.
    Google ScholarLocate open access versionFindings
  • [102] L. D. Belyakova, T. I. Schevchenko, V. A. Davankov, M. P. Tsyurupa, A. N. Nesmeyanov, Adv. Colloid Interface Sci. 1986, 25, 249–266.
    Google ScholarLocate open access versionFindings
  • [103] V. A. Davankov, M. P. Tsyurupa, React. Polym. 1990, 13, 27– 42.
    Google ScholarFindings
  • [104] V. A. Davankov, A. V. Pastukhov, M. P. Tsyurupa, J. Polym. Sci, Part B: Polym. Phys. 2000, 38, 1553–1563.
    Google ScholarLocate open access versionFindings
  • [105] M. P. Tsyurupa, V. A. Davankov, React. Funct. Polym. 2006, 66, 768–779.
    Google ScholarLocate open access versionFindings
  • [106] V. V. Podlesnyuk, J. Hradil, E. Kralova, React. Funct. Polym. 1999, 42, 181–191.
    Google ScholarLocate open access versionFindings
  • [107] Polymer Handbook, (Eds: J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch), John Wiley & Sons, New York 2005.
    Google ScholarFindings
  • [108] M. P. Tsyurupa, V. A. Davankov, React. Funct. Polym. 2002, 53, 193–203.
    Google ScholarLocate open access versionFindings
  • [109] L. A. Pavlova, M. V. Pavlov, V. A. Davankov, Dokl. Chem. 2006, 406, 6–8.
    Google ScholarLocate open access versionFindings
  • [110] J. Germain, F. Svec, J. M. J. Frechet, Chem. Mater. 2008, 20, 7069– 7076.
    Google ScholarFindings
  • [111] C. D. Wood, B. Tan, A. Trewin, H. Niu, D. Bradshaw, M. J. Rosseinsky, Y. Z. Khimyak, N. L. Campbell, R. Kirk, E. Stockel, A. I. Cooper, Chem. Mater. 2007, 19, 2034–2048.
    Google ScholarLocate open access versionFindings
  • [112] O. W. Webster, F. P. Gentry, R. D. Farlee, B. E. Smart, Makromol. Chem, Macromol. Symp. 1992, 54–55, 477–482.
    Google ScholarLocate open access versionFindings
  • [113] V. A. Davankov, M. M. Ilyin, M. P. Tsyurupa, G. I. Timofeeva, L. V. Dubrovina, Macromolecules 1996, 29, 8398–8403.
    Google ScholarLocate open access versionFindings
  • [114] J. Hradil, E. Kralova, Polymer 1998, 39, 6041–6048.
    Google ScholarFindings
  • [115] J. Y. Lee, C. D. Wood, D. Bradshaw, M. J. Rosseinsky, A. I. Cooper, Chem. Commun. 2006, 2670–2672. 1110 www.small-journal.com ß 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim small 2009, 5, No. 10, 1098–1111
    Findings
  • [116] J. Germain, F. Svec, J. M. J. Frechet, PMSE Prepr. 2007, 97, 272– 273.
    Google ScholarFindings
  • [117] C. Buda, B. D. Dunietz, J. Phys. Chem. B 2006, 110, 10479– 10484.
    Google ScholarLocate open access versionFindings
  • [118] J. L. C. Rowsell, J. Eckert, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 14904–14910.
    Google ScholarLocate open access versionFindings
  • [119] R. C. Lochan, M. Head-Gordon, Phys. Chem. Chem. Phys. 2006, 8, 1357–1370.
    Google ScholarLocate open access versionFindings
  • [120] J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper, Angew. Chem, Int. Ed. 2007, 46, 8574–8578.
    Google ScholarLocate open access versionFindings
  • [121] J. X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, J. Am. Chem. Soc. 2008, 130, 7710–7720.
    Google ScholarLocate open access versionFindings
  • [122] E. Stockel, X. Wu, A. Trewin, C. D. Wood, R. Clowes, N. L. Campbell, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Chem. Commun. 2009, 212–214.
    Google ScholarLocate open access versionFindings
  • [123] P. M. Budd, N. B. McKeown, D. Fritsch, J. Mater. Chem. 2005, 15, 1977–1986.
    Google ScholarLocate open access versionFindings
  • [124] N. B. McKeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, H. J. Kingston, C. E. Tattershall, S. Makhseed, K. J. Reynolds, D. Fritsch, Chem. Eur. J. 2005, 11, 2610–2620.
    Google ScholarLocate open access versionFindings
  • [125] N. B. McKeown, P. M. Budd, D. Book, Macromol. Rapid. Commun. 2007, 28, 995–1002.
    Google ScholarLocate open access versionFindings
  • [126] N. B. McKeown, B. Gahnem, K. J. Msayib, P. M. Budd, C. E. Tattershall, K. Mahmood, S. Tan, D. Book, H. W. Langmi, A. Walton, Angew. Chem, Int. Ed. 2006, 45, 1804–1807.
    Google ScholarLocate open access versionFindings
  • [127] P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, D. Wang, Adv. Mater. 2004, 16, 456–459.
    Google ScholarLocate open access versionFindings
  • [128] P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, Chem. Commun. 2004, 230–231.
    Google ScholarLocate open access versionFindings
  • [129] B. S. Ghanem, N. B. McKeown, P. M. Budd, D. Fritsch, Macromolecules 2008, 41, 1640–1646.
    Google ScholarLocate open access versionFindings
  • [130] P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown, D. Fritsch, J. Membr. Sci. 2005, 251, 263–269.
    Google ScholarLocate open access versionFindings
  • [131] J. Weber, O. Su, M. Antonietti, A. Thomas, Macromol. Rapid. Commun. 2007, 28, 1871–1876.
    Google ScholarFindings
  • [132] B. S. Ghanem, N. B. McKeown, P. M. Budd, J. D. Selbie, D. Fritsch, Adv. Mater. 2008, 20, 2766–2771.
    Google ScholarFindings
  • [133] B. S. Ghanem, K. J. Msayib, N. B. McKeown, K. D. M. Harris, Z. Pan, P. M. Budd, A. Butler, J. Selbie, D. Book, A. Walton, Chem. Commun. 2007, 67–69.
    Google ScholarLocate open access versionFindings
  • [134] S. Makhseed, J. Samuel, A. Bumajdad, M. Hassan, J. Appl. Polym. Sci. 2008, 109, 2591–2597.
    Google ScholarLocate open access versionFindings
  • [135] G. Garberoglio, Langmuir 2007, 23, 12154–12158.
    Google ScholarFindings
  • [136] H. M. El Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O’Keeffe, O. M. Yaghi, Science 2007, 316, 268–272.
    Google ScholarLocate open access versionFindings
  • [137] M. Mastalerz, Angew. Chem, Int. Ed. 2008, 47, 445–447.
    Google ScholarFindings
  • [138] A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
    Google ScholarLocate open access versionFindings
  • [139] P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem, Int. Ed. 2008, 47, 3450–3453.
    Google ScholarFindings
  • [140] R. W. Tilford, S. J. Mugavero, P. J. Pellechia, J. J. Lavigne, Adv. Mat. 2008, 20, 2741–2746.
    Google ScholarFindings
  • [141] N. L. Campbell, R. Clowes, L. K. Lyndsay, A. I. Cooper, Chem. Mater. 2009, 21, 204–206.
    Google ScholarLocate open access versionFindings
  • [142] P. I. Ravikovitch, A. Vishnyakov, R. Russo, Langmuir 2000, 16, 2311–2320.
    Google ScholarFindings
  • [143] S. A. Johnson, P. J. Ollivier, T. E. Mallouk, Science 1999, 283, 963–965.
    Google ScholarLocate open access versionFindings
  • [144] X. X. Zhu, K. Banana, R. Yen, Macromolecules 1997, 30, 3031– 3035.
    Google ScholarFindings
  • [145] N. R. Cameron, D. C. Sherrington, I. Ando, J. Mater. Chem. 1996, 6, 719–726.
    Google ScholarLocate open access versionFindings
  • [146] N. R. Cameron, A. Barbetta, J. Mater. Chem. 2000, 10, 2466– 2472.
    Google ScholarLocate open access versionFindings
  • [147] P. Krajnc, N. Leber, J. F. Brown, N. R. Cameron, React. Funct. Polym. 2006, 66, 81–91.
    Google ScholarLocate open access versionFindings
  • [148] Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136–8137.
    Google ScholarLocate open access versionFindings
  • [149] H. Takagi, H. Hatori, Y. Yamada, Chem. Lett. 2004, 33, 1220–1221.
    Google ScholarFindings
  • [150] H. Takagi, H. Hatori, Y. Yamada, S. Matsuo, M. Shiraishi, J. Alloys Compd. 2004, 385, 257–263.
    Google ScholarLocate open access versionFindings
  • [151] M. Zielinski, R. Wojcieszak, S. Monteverdi, M. Mercy, M. M. Bettahar, Catal. Commun. 2005, 6, 777–783.
    Google ScholarLocate open access versionFindings
  • [152] C. K. Back, G. Sandi, J. Prakash, J. Hranisavljevic, J. Phys. Chem. B 2006, 110, 16225–16231.
    Google ScholarLocate open access versionFindings
  • [153] Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 726–727.
    Google ScholarLocate open access versionFindings
  • [154] Y. Li, R. T. Yang, Langmuir 2007, 23, 12937–12944.
    Google ScholarFindings
  • [155] Y. Li, R. T. Yang, J. Phys. Chem. B 2006, 110, 17175–17181.
    Google ScholarLocate open access versionFindings
  • [156] A. J. Lachawiec, G. S. Qi, R. T. Yang, Langmuir 2005, 21, 11418–11424.
    Google ScholarFindings
  • [157] Y. W. Li, A. J. Lachawiec, R. T. Yang, 2007 DOE Hydrogen Program Review, May 2007, Arlington, VA.
    Google ScholarLocate open access versionFindings
  • [158] R. Zacharia, S. U. Rather, S. W. Hwang, K. S. Nahm, Chem. Phys. Lett. 2007, 434, 286–291.
    Google ScholarLocate open access versionFindings
  • [159] A. Michels, W. Degraaff, Physica 1960, 26, 393–408.
    Google ScholarLocate open access versionFindings
  • [160] L. F. Wang, R. T. Yang, J. Phys. Chem. C 2008, 112, 12486–12494.
    Google ScholarLocate open access versionFindings
  • [161] M. Dinca, J. R. Long, J. Am. Chem. Soc. 2005, 127, 9376–9377.
    Google ScholarLocate open access versionFindings
  • [162] B. Panella, K. Hones, U. Muller, N. Trukhan, M. Schubert, H. Putter, M. Hirscher, Angew. Chem, Int. Ed. 2008, 47, 2138–2142.
    Google ScholarLocate open access versionFindings
  • [163] A. Hamaed, M. Trudeau, D. M. Antonelli, J. Am. Chem. Soc. 2008, 130, 6992–6999. Chem. Soc. 2008, 130, 6668–6669.
    Google ScholarLocate open access versionFindings
  • [165] M. Sankaran, B. Viswanathan, Carbon 2007, 45, 1628–1635.
    Google ScholarFindings
  • [166] P. Kowalczyk, H. Tanaka, R. Holyst, K. Kaneko, T. Ohmori, J. Miyamoto, J. Phys. Chem. B 2005, 109, 17174–17183.
    Google ScholarLocate open access versionFindings
  • [167] S. H. Jhung, H. K. Kim, J. W. Yoon, J. S. Chang, J. Phys. Chem. B 2006, 110, 9371–9374.
    Google ScholarLocate open access versionFindings
  • [168] J. T. Culp, S. Natesakhawat, M. R. Smith, E. Bittner, C. Matranga, B. Bockrath, J. Phys. Chem. C 2008, 112, 7079–7083.
    Google ScholarLocate open access versionFindings
  • [169] V. Smigol, F. Svec, J. Appl. Polym. Sci. 1993, 48, 2033–2039.
    Google ScholarLocate open access versionFindings
  • [170] N. Fontanals, R. M. Marce, M. Galia, J. Polym. Sci, Part A: Polym. Chem. 2003, 41, 1927–1933.
    Google ScholarLocate open access versionFindings
  • [171] B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, K. M. Thomas, J. Am. Chem. Soc. 2009, 130, 6411–6423.
    Google ScholarLocate open access versionFindings
  • [172] M. Dinca, A. Dailly, C. Tsay, J. R. Long, Inorg. Chem. 2008, 47, 11– 13.
    Google ScholarLocate open access versionFindings
  • [173] P. Benard, R. Chahine, Langmuir 2001, 17, 1950–1955.
    Google ScholarFindings
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科