AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
Significant progress has been achieved in the last thirty years with homogeneous catalysts and the main emphasis has been on ligand design to control the reactant approach to the active centre, so that the reaction occurs at only one face of the approaching prochiral substrate

Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts.

CHEMICAL SOCIETY REVIEWS, no. 2 (2004): 108-122

被引用303|浏览7
WOS
下载 PDF 全文
引用
微博一下

摘要

Enantioselective formation of C-H, C-C, C-O and C-N bonds has been extensively studied using homogeneous asymmetric catalysts for many years. However, these catalysts have yet to make a significant impact in the industrial synthesis of fine chemicals. A central reason is that homogeneous asymmetric catalyst design requires relatively bulk...更多

代码

数据

0
简介
  • The enantioselective formation of C–H, C–C, C–O and C–N bonds represents one of the biggest challenges in synthetic chemistry.
  • Encapsulation is the only catalyst immobilisation process which does not require any interaction between the catalyst and the support, and because of this it is the only method which attempts to mimic the homogeneously catalysed reaction process.
重点内容
  • The enantioselective formation of C–H, C–C, C–O and C–N bonds represents one of the biggest challenges in synthetic chemistry
  • Significant progress has been achieved in the last thirty years with homogeneous catalysts and the main emphasis has been on ligand design to control the reactant approach to the active centre, so that the reaction occurs at only one face of the approaching prochiral substrate
  • In 2001, the significant achievements in the design and application of asymmetric homogeneous catalysts were recognised by the award of the Chemistry Nobel Prize to W
  • The additional constraints placed upon the chiral catalyst can induce increased enantioselection compared with the homogeneous catalyst, and several examples have been given in this review
  • It can be expected that the containment effect observed with both the tethering and electrostatic interaction can be used effectively to design a new generation of immobilised asymmetric catalysts capable of both high yields and enantioselection
结果
  • PDMS films have been used to immobilise Rh-MeDuPHOS for the enantioselective hydrogenation of methyl-2-acetamidoacrylate and methylacetoacetate.[18] For both of these reactions high e.e.s were obtained with the heterogenised catalyst (90–96%), but this is still slightly reduced compared to the homogeneous reactions which typically give e.e.s of 99%.
  • A combination of covalent attachment and electrostatic interaction has been used to immobilise Cr salen complexes for the enantioselective hydrolysis of epoxides with trimethylsilyl azide.[28] The surface of silica, MCM-41 and ITQ-2 were initially functionalised with 3-aminopropyltriethoxysilane.
  • The homogeneous equivalent reactions gave much higher conversions than those obtained for the immobilised catalyst (95 and 60–70% respectively).
  • The authors have used this immobilisation strategy to design asymmetric heterogeneous catalysts for alcohol dehydration,[35] aziridination,[36] and epoxidation[37] of alkene, and carbonyl and imino ene reactions.[38] The design approach involves the ion exchange of suitable cations into the intracrystalline pores of zeolites, e.g. zeolite Y, or mesoporous solids, e.g. MCM-41 and the subsequent modification of the cation with a chiral ligand prior to reaction.
  • The authors immobilised copper(II) bis(oxazoline) complexes with zeolite Y and Al-MCM-41.36 Initially, the zeolite or mesoporous solid was partially ion-exchanged to give the Cu2+ form with 3–5 wt% Cu. The aziridination of alkenes was investigated using [N-(p-tolylsulfonyl)imino]phenyliodinane (PhINNTs) and [N-(p-nitrophenylsulfonyl)imino]phenyliodinane (PhINNNs) as nitrene donors (Fig. 21).
  • Of the four immobilisation strategies developed to date for the preparation of asymmetric heterogeneous catalysts, two, namely immobilisation by covalent tethering and electrostatic interaction, have been shown to form reasonably stable catalysts that are capable of re-use.
结论
  • Most importantly, is the observation by several research groups of the containment effect, i.e. that the immobilised asymmetric catalyst is constrained through interaction with the supporting matrix.[43] The additional constraints placed upon the chiral catalyst can induce increased enantioselection compared with the homogeneous catalyst, and several examples have been given in this review.
  • It can be expected that the containment effect observed with both the tethering and electrostatic interaction can be used effectively to design a new generation of immobilised asymmetric catalysts capable of both high yields and enantioselection.
表格
  • Table1: The asymmetric epoxidation of various alkenes catalysed by the (R,R)-(salen)Mn complex under homogeneous and heterogeneous conditions[<a class="ref-link" id="c15" href="#r15">15</a>]
  • Table2: Reduction of acetophenone at room temperature[<a class="ref-link" id="c32" href="#r32">32</a>]
  • Table3: Effect of styrene:PhINNs molar ratio on the asymmetric aziridination of styrene at 25 °Ca,[<a class="ref-link" id="c36" href="#r36">36</a>]
  • Table4: Effect of bis(oxazoline) on the aziridination of styrenea[<a class="ref-link" id="c36" href="#r36">36</a>]
Download tables as Excel
基金
  • The immobilised catalyst gave up to 72% e.e. for the hydrogenation of (Z)-a-acetamidocinnamic acid 4
引用论文
  • For details see Nobel lectures, Angew. Chem. Int. Ed., 2002, 41, p. 998.
    Google ScholarLocate open access versionFindings
  • H.-U Blaser, Chem. Commun., 2003, 293.
    Google ScholarLocate open access versionFindings
  • 3 M. Davies, Microporous Mesoporous Mater., 1998, 21, 173.
    Google ScholarFindings
  • 4 H.-U. Blaser and B. Pugin, in Chiral Reactions in Heterogeneous Catalysis, Plenum, New York, 1995, p 33.
    Google ScholarFindings
  • 6 C. E. Song and S.-G. Lee, Chem. Rev., 2002, 19, 3495.
    Google ScholarLocate open access versionFindings
  • 7 A. Baiker, J. Mol. Catal. A, 1997, 115, 473.
    Google ScholarLocate open access versionFindings
  • 8 H.-U. Blaser, H. P. Jalett, M. Müller and M. Studer, Catal. Today, 1997, 37, 441.
    Google ScholarLocate open access versionFindings
  • 9 P. B. Wells and A. G. Wilkinson, Topics Catal., 1998, 5, 39.
    Google ScholarLocate open access versionFindings
  • 10 C. Bianchini, P. Barbaro, V. Dal Santo, R. Gobetto, A. Meli, W. Oberhauser, R. Psaro and F. Vizza, Adv. Synth. Catal., 2001, 343, 41 and references cited therein.
    Google ScholarLocate open access versionFindings
  • 11 K. T. Wan and M. E. Davis, J. Catal., 1995, 152, 25 and references cited therein.
    Google ScholarLocate open access versionFindings
  • 12 H. N. Flach, I. Grassert, G. Oehme and M. Capka, Colloid Polym. Sci., 1996, 274, 261.
    Google ScholarLocate open access versionFindings
  • 13 J. Jamis, J. R. Anderson, R. S. Dickson, E. M. Campi and W. R. Jackson, J. Organomet. Chem., 2001, 627, 37.
    Google ScholarLocate open access versionFindings
  • 14 S. B. Ogunwami and T. Bein, Chem. Commun., 1997, 901.
    Google ScholarLocate open access versionFindings
  • 15 M. J. Sabatier, A. Corma, A. Domenech, V. Fornes and H. Garcia, Chem. Commun., 1997, 1285.
    Google ScholarLocate open access versionFindings
  • 16 C. Schuster, E. Mollmann, A. Tompos and W. F. Hölderich, Catal. Lett., 2001, 74, 69 and references cited therein.
    Google ScholarLocate open access versionFindings
  • 17 S. Ernst, E. Fuchs and X. Yang, Microporous Mesoporous Mater., 2000, 35–36, 137.
    Google ScholarLocate open access versionFindings
  • 18 A. Wolfson, S. Janssens, I. Vankelcom, S. Geresh, M. Gottlieb and M. Herkowitz, Chem. Commun., 2002, 388and references cited therein.
    Google ScholarLocate open access versionFindings
  • 19 K. Soai, M. Watanabe and A. Yamamoto, J. Org. Chem., 1990, 55, 4832.
    Google ScholarLocate open access versionFindings
  • 20 S. Abramson, N. Bellocq and M. Lasperas, Top. Catal., 2000, 13, 339 and references cited therein.
    Google ScholarLocate open access versionFindings
  • 21 Y.-M. Chung and H.-K. Rhee, Chem. Commun., 2002, 238.
    Google ScholarLocate open access versionFindings
  • 22 J. S. Bae, S.-W. Kim, T. Hyeon and B. M. Kim, Chem. Commun., 2000, 32.
    Google ScholarLocate open access versionFindings
  • 23 A. Corma, H. Garcia, A. Moussaif, M. J. Sabatier, R. Zniber and A. Redouane, Chem. Commun., 2002, 1058.
    Google ScholarLocate open access versionFindings
  • 24 D. Rechavi and M. Lemaire, J. Mol. Catal. A, 2002, 182–183, 239.
    Google ScholarLocate open access versionFindings
  • 25 S. Xiang, Y. Zhang, Q. Xin and C. Li, Angew. Chem. Int. Ed., 2002, 41, 821.
    Google ScholarLocate open access versionFindings
  • D. Pini, A. Mandoli, S. Orlandi and P. Salvadori, Tetrahedron: Asymmetry, 1999, 10, 3883.
    Google ScholarFindings
  • B. M. Choudary, N. S. Chowdari, M. L. Kantam and P. L. Santhi, Catal. Lett., 2001, 76, 213.
    Google ScholarLocate open access versionFindings
  • C. Baleizao, B. Gigante, M. J. Sabatier, H. Garcia and A. Corma, Appl. Catal. A, 2002, 288, 279.
    Google ScholarLocate open access versionFindings
  • M. I. Burguete, J. M. Fraile, J. I. Garcia, E. Garcia-Verdugo, C. I. Herrerias, S. V. Luis and J. A. Mayoral, J. Org. Chem., 2001, 66, 8893.
    Google ScholarLocate open access versionFindings
  • R. J. Clarke and I. J. Shannon, Chem. Commun., 2001, 1936.
    Google ScholarLocate open access versionFindings
  • 31 S. A. Raynor, J. M. Thomas, R. Raja, B. F. G. Johnson, R. G. Bell and M. D. Mantle, Chem. Commun., 2000, 1925.
    Google ScholarLocate open access versionFindings
  • 32 A. Adima, J. J. E. Moreau and M. W. C. Man, Chirality, 2000, 12, 411.
    Google ScholarFindings
  • 33 M. Mazzei, W. Marconi and M. Riocci, J. Mol. Catal., 1980, 9, 381.
    Google ScholarLocate open access versionFindings
  • 34 R. Selke and M. Capka, J. Mol. Catal., 1990, 63, 319.
    Google ScholarLocate open access versionFindings
  • Siddiqui, D. J. Willock and G. J. Hutchings, J. Chem. Soc., Chem. Commun., 1995, 2499.
    Google ScholarLocate open access versionFindings
  • S. Taylor, J. Gullick, P. McMorn, D. Bethell, P. C. Bullman Page, F. E. Hancock, F. King and G. J. Hutchings, J. Chem. Soc., Perkin 2, 2001, 1714.
    Google ScholarLocate open access versionFindings
  • P. Piaggio, P. McMorn, D. Murphy, D. Bethell, P. C. Bullman Page, F. E. Hancock, C. Sly, O. J. Kerton and G. J. Hutchings, J. Chem. Soc., Perkin 2, 2000, 2008.
    Google ScholarLocate open access versionFindings
  • F. E. Hancock, G. J. Hutchings and N. A. Caplan, Patent WO 03/018191 (2003).
    Google ScholarLocate open access versionFindings
  • S. Feast, M. R. H. Siddiqui, R. P. K. Wells, D. J. Willock, F. King, C. H. Rochester, D. Bethell, P. C. B. Page and G. J. Hutchings, J. Catal., 1997, 167, 533.
    Google ScholarLocate open access versionFindings
  • Y. Traa, D. M. Murphy, R. D. Farley and G. J. Hutchings, Phys. Chem. Chem. Phys., 2001, 3, 1073.
    Google ScholarLocate open access versionFindings
  • D. Rechavi and M. Lemaire, Chem. Rev., 2002, 102, 3467.
    Google ScholarLocate open access versionFindings
  • Mol. Catal. A, 1999, 141, 139.
    Google ScholarLocate open access versionFindings
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科