A partial digest approach to restriction site mapping.
Bulletin of Mathematical Biology(1993)
摘要
We present a new, practical algorithm to resolve the experimental data in restriction site analysis, which is a common technique for mapping DNA. Specifically, we assert that multiple digestions with a single restriction enzyme can provide sufficient information to identify the positions of the restriction sites with high probability. The motivation for the new approach comes from combinatorial results on the number of mutually homeometric sets in one dimension, where two sets of n points are homeometric if the multiset of n(n-1)/2 distances they determine are the same. Since experimental data contain errors, we propose algorithms for reconstructing sets from noisy interpoint distances, including the possibility of missing fragments. We analyse the performance of these algorithms under a reasonable probability distribution, establishing a relative error limit of r = theta(1/n2) beyond which our technique becomes infeasible. Through simulations, we establish that our technique is robust enough to reconstruct data with relative errors of up to 7.0% in the measured fragment lengths for typical problems, which appears sufficient for certain biological applications.
更多查看译文
关键词
Pyramid,Combinatorial Result,False Match,Multiple Fragment,Base Fragment
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn