谷歌浏览器插件
订阅小程序
在清言上使用

Physico-Chemical Behaviour and Algal Toxicity of Nanoparticulate Ceo2 in Freshwater

Environmental chemistry(2010)

引用 164|浏览12
暂无评分
摘要
Environmental context. It cannot be assumed that nanomaterials entering aquatic environments will have the same impacts on aquatic biota as their macroscopic particle equivalents. If their toxicities are different, this will have implications for the way in which nanomaterial usage is regulated. Algae, at the bottom of the food chain, are likely to be a sensitive indicator of toxic effects. Understanding the physical and chemical factors controlling nanoparticle toxicity to algae will assist in evaluating their ecological risk. Abstract. In assessing the risks posed by nanomaterials in the environment, the overriding research challenges are to determine if nanomaterials are more toxic than the bulk forms of the same material, and the extent to which toxicity is governed by particle size and reactivity. In this study, the toxicity of nanoparticulate CeO2 (nominally 10–20 nm) to the freshwater alga Pseudokirchneriella subcapitata was compared to the same material at the micron size (nominally <5 μm). Growth inhibition experiments revealed inhibitory concentration values, giving 50% reduction in algal growth rate after 72 h (IC50), of 10.3 ± 1.7 and 66 ± 22 mg L–1 for the nanoparticles and bulk materials respectively. Cells exposed to CeO2 particles were permeable to the DNA-binding dye SYTOX® Green in a concentration-dependent manner indicating damage to the cell membrane. Screening assays to assess the oxidative activity of the particles showed that the light illumination conditions used during standard algal bioassays are sufficient to stimulate photocatalytic activity of CeO2 particles, causing the generation of hydroxyl radicals and peroxidation of a model plant fatty acid. No oxidative activity or lipid peroxidation was observed in the dark. These findings indicate that inhibitory mode of action of CeO2 to P. subcapitata is mediated by a cell-particle interaction causing membrane damage. The effect is most likely photochemically induced and is enhanced for the nanoparticulate form of the CeO2.
更多
查看译文
关键词
cerium oxide,microalgae,nanoparticle,photocatalytic activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要