In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry

Gastrointestinal Endoscopy(2007)

引用 55|浏览8
暂无评分
摘要
Monitoring of patients with Barrett's esophagus (BE) for dysplasia, currently done by systematic biopsy, can be improved through increasing the proportion of at-risk tissue examined.Optical biopsy techniques, which do not remove the tissue but interrogate the tissue with light, offer a potential method to improve the monitoring of BE. Frequency-domain angle resolved low-coherence interferometry (fa/LCI) is an optical spectroscopic technique applied through an endoscopic fiber bundle and measures the depth-resolved nuclear morphology of tissue, a key biomarker for identifying dysplasia. The aim of the study was to assess the diagnostic capability of fa/LCI for differentiating healthy and dysplastic tissue in patients with BE.Depth-resolved angular scattering data are acquired by using fa/LCI from tissue excised from 3 patients who had esophagogastrectomy. The data are processed to determine the average nuclear size and density as a function of depth beneath the tissue surface. These data are compared with the pathologic classification of the tissue.Average of depth-resolved nuclear diameter and nuclear density measurements in tissue samples.Upon comparison to pathologic diagnosis, the fa/LCI data results report the nuclear atypia characteristic of dysplasia in the epithelial tissue. Examination of the average nuclear morphology over the superficial 150 mum results in complete separation between healthy columnar and BE dysplastic tissues.Lack of in vivo data; lack of nondysplastic BE data because of limited sample size.In complicated tissue structures, such as BE, depth-resolved nuclear morphology measurements provided an excellent means to identify dysplasia. The preliminary results demonstrate the great potential for the in vivo application of fa/LCI as a targeting mechanism for physical biopsy in patients with BE.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要