Effect of short-term exposure to whole body vibration in humans: relationship between wakefulness level and vibration frequencies.

The Kurume medical journal(2009)

引用 13|浏览11
暂无评分
摘要
The purpose of this study was to clarify the influence of different vibration frequencies on wakefulness level. Subjects were 7 healthy male university students aged 21.9+/-1.6 years (mean). All students were non-smokers. Three exposure conditions were used (10 Hz vibration, 20 Hz vibration, and no vibration). Whole-body vertical vibration was applied to subjects sitting on a car passenger seat using a whole-body vibration shaker (CV-300, Akashi) at a single frequency (10 or 20 Hz) at an acceleration level of 0.3 ms(-2) r.m.s. for 24 min. The objective wakefulness level based on EEGs was evaluated in terms of the alpha attenuation coefficient (AAC) obtained by the Alpha Attenuation Test (AAT). As parameters of psychological stress, salivary 3-methoxy-4-hydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were used. The subjective wakefulness level was evaluated using a questionnaire based on the Kwansei Gakuin Sleepiness Scale (KSS), which is a scale developed for the Japanese based on the Stanford Sleepiness Scale (SSS). The KSS score, representing the subjective wakefulness level, decreased after the exposure irrespective of the exposure condition, but the decrease was not significant. The AAC, representing the objective wakefulness level, significantly decreased only after vibration exposure (10 Hz/20 Hz) but did not differ between the two vibration frequencies. No significant changes were observed after exposure to whole-body vibration in MHPG or HVA as parameters of vibration-related stress. The AAC decreased after exposure to whole-body vibration (10 Hz/20 Hz), suggesting a decrease in the wakefulness level. However, no differences were observed in the influence of the two different vibration frequencies test.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要