ESO 3060170 -- a massive fossil galaxy group with a heated gas core?

M. Sun,W. Forman大牛学者,A. Vikhlinin大牛学者,A. Hornstrup大牛学者, C. Jones,S. S. Murray

ASTROPHYSICAL JOURNAL(2004)

引用 65|浏览47
摘要
We present a detailed study of the ESO 3060170 galaxy group, combining Chandra, XMM-Newton, and optical observations. The system is found to be a fossil galaxy group. The group X-ray emission is composed of a central, dense, cool core (10 kpc in radius) and an isothermal medium beyond the central 10 kpc. The region between 10 and 50 kpc (the cooling radius) has the same temperature as the gas from 50 to 400 kpc, although the gas cooling time between 10 and 50 kpc (2-6 Gyr) is shorter than the Hubble time. Thus, the ESO 3060170 group does not have a group-sized cooling core. We suggest that the group cooling core may have been heated by a central active galactic nucleus (AGN) outburst in the past and that the small, dense, cool core is the truncated relic of a previous cooling core. The Chandra observations also reveal a variety of X-ray features in the central region, including a "finger," an edgelike feature, and a small "tail," all aligned along a north-south axis, as are the galaxy light and group galaxy distribution. The proposed AGN outburst may cause gas to "slosh" around the center and produce these asymmetric features. The observed flat temperature profile to 1/3r(vir) is not consistent with the predicted temperature profile in recent numerical simulations. We compare the entropy profile of the ESO 3060170 group with those of three other groups and find a flatter relation than that predicted by simulations involving only shock heating, S proportional to r(similar to0.85). This is direct evidence of the importance of nongravitational processes in group centers. We derive the mass profiles within 1/3r(vir) and find that the ESO 3060170 group is the most massive fossil group known [(1-2)x10(14) M-circle dot]. The M/L ratio of the system, similar to150 at 0.3r(vir), is normal.
更多
查看译文
关键词
galaxies : individual (ESO 3060170),hydrodynamics,X-rays : galaxies : clusters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn