Solving Elliptic Finite Element Systems in Near-Linear Time with Support Preconditioners
Clinical Orthopaedics and Related Research(2008)
摘要
We consider linear systems arising from the use of the finite element method for solving scalar linear elliptic problems. Our main result is that these linear systems, which are symmetric and positive semidefinite, are well approximated by symmetric diagonally dominant matrices. Our framework for defining matrix approximation is support theory. Significant graph theoretic work has already been developed in the support framework for preconditioners in the diagonally dominant case, and, in particular, it is known that such systems can be solved with iterative methods in nearly linear time. Thus, our approximation result implies that these graph theoretic techniques can also solve a class of finite element problems in nearly linear time. We show that the support number bounds, which control the number of iterations in the preconditioned iterative solver, depend on mesh quality measures but not on the problem size or shape of the domain.
更多查看译文
PDF
PPT
代码
数据
原文链接
标签
评论
作者解读
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn