Global Mean First-Passage Times Of Random Walks On Complex Networks

PHYSICAL REVIEW E(2009)

引用 120|浏览36
摘要
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow, is realized under the simple condition that the random walk is transient at the target site and independently of the small-world, scale-free, or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network since the target averaged GMFPT satisfies much more restrictive bounds.
更多
查看译文
PDF
PPT

代码

数据

原文链接
引用

0
您的评分 :

暂无评分

标签
评论
avatar
作者解读

点赞

0%
0/20人

想看人数超过20人时,我们会邀请作者来解读:

  • 解决的问题
  • 实验设计的思路
  • 重要创新
  • 后续可能的深入研究
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn