Overcoming Amino-Nogo-induced Inhibition of Cell Spreading and Neurite Outgrowth by 12-O-Tetradecanoylphorbol-13-acetate-type Tumor Promoters

Journal of Biological Chemistry(2010)

引用 23|浏览2
暂无评分
摘要
The N-terminal domain of NogoA, called amino-Nogo, inhibits axonal outgrowth and cell spreading via a largely unknown mechanism. In the present study, we show that amino-Nogo decreases Rac1 activity and inhibits fibroblast spreading. 12-O-Tetradecanoylphorbol-13-acetate-type tumor promoters, such as phorbol 12-myristate 13-acetate (PMA) and teleocidin, increase Rac1 activity and overcome the amino-Nogo-induced inhibition of cell spreading. The stimulating effect of tumor promoters on cell spreading requires activation of protein kinase D and the subsequent activation of Akt1. Furthermore, we identified Akt1 as a new signaling component of the amino-Nogo pathway. Akt1 phosphorylation is decreased by amino-Nogo. Activation of Akt1 with a cell-permeable peptide, TAT-TCL1, blocks the amino-Nogo inhibition. Finally, we provide evidence that these signaling pathways operate in neurons in addition to fibroblasts. Our results suggest that activation of protein kinase D and Akt1 are approaches to promote axonal regeneration after injury.
更多
查看译文
关键词
Cell/Fibroblast,Cell/Neuron,Diseases/Neurodegeneration,Neurobiology/Neuroscience,Phosphorylation/Kinases/Serine-Threonine,Signal Transduction/Phorbol Esters,Signal Transduction/Protein Kinases,Tumor/Promoter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要