Products transcribed from rearranged rrn genes of Escherichia coli can assemble to form functional ribosomes.

JOURNAL OF BACTERIOLOGY(2003)

引用 23|浏览5
暂无评分
摘要
To examine the flexibility of rRNA operons with respect to fundamental organization, transcription, processing, and assembly of ribosomes, operon variations were introduced by a plasmid into an Escherichia coli strain that has deletions of all chromosomal copies of rRNA genes. In the reconstructed operons, a Salmonella intervening sequence (IVS) from 23S helix 45 was introduced into the E. coli 23S gene at the same position. Three different constructs of the E. coli 16S gene were then placed wholly within the IVS sequence, and the 16S gene was deleted from its normal position. The resulting plasmids thus had the normal operon promoters and the leader region followed by the 5' one-third of the 23S gene, the entire 16S gene within the IVS, the last two-thirds of the 23S gene, and the normal end of the operon. The three constructs differed in the amount of 16S leader and spacer regions they contained. Only two of the three constructs, those with redundant leader and spacer antiterminator signals, resulted in viable cultures of the rrn deletion strain. Electron micrographs of the variant operon suggest that the 23S rRNA is made in two separate parts which then must form subassemblies before assembling into a functional 50S subunit. Cells containing only the reshuffled genes were debilitated in their growth properties and ribosome contents. The fact that such out of the ordinary manipulation of rRNA sequences in E. coli is possible paves the way for detailed analysis of ribosome assembly and evolution.
更多
查看译文
关键词
escherichia coli,introns,ribosomes,operon,plasmids
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要