Pushing The Lithography Limit - Applying Inverse Lithography Technology (Ilt) At The 65nm Generation

Proceedings of SPIE(2006)

引用 22|浏览3
暂无评分
摘要
This paper presents the results of applying ILT to SMIC's first 65nm tape out. ILT mathematically determines the mask features that produce the desired on-wafer results for best pattern fidelity, largest process window or an desired combination of both. SMIC applied this technology to its first 65nm tape-out to study its performance and benefits for deep sub-wavelength lithography. SMIC selected 3 SRAM designs as the first set of test cases, because SRAM bit-cells contain features which are lithographically challenging. Firstly, three experiments were performed to optimize the illumination and mask design of a pair of layers by optimizing exposure energy, enabling SRAF, and enforcing mask constraints. Secondly, mask manufacturability (including fracturing and writing time) and wafer print performance of ILT was studied. Thirdly, mask patterns generated by both conventional Optical Proximity Correction (OPC) and ILT, both using only their optical models, were placed on the mask side-by-side. The results demonstrated that ILT achieved better CD accuracy and produced significantly larger process window than conventional OPC.
更多
查看译文
关键词
inverse lithography technology (ILT),OPC,RET,lithography,SRAM,65nm technology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要