A sub-constant improvement in approximating the positive semidefinite Grothendieck problem
CoRR, 2014.
EI
Abstract:
Semidefinite relaxations are a powerful tool for approximately solving combinatorial optimization problems such as MAX-CUT and the Grothendieck problem. By exploiting a bounded rank property of extreme points in the semidefinite cone, we make a sub-constant improvement in the approximation ratio of one such problem. Precisely, we descri...More
Code:
Data:
Full Text
Tags
Comments