High Performance Locks For Multi-Level Numa Systems

ACM SIGPLAN Notices(2015)

引用 81|浏览52
暂无评分
摘要
Efficient locking mechanisms are critically important for high performance computers. On highly-threaded systems with a deep memory hierarchy, the throughput of traditional queueing locks, e.g., MCS locks, falls off due to NUMA effects. Two-level cohort locks perform better on NUMA systems, but fail to deliver top performance for deep NUMA hierarchies. In this paper, we describe a hierarchical variant of the MCS lock that adapts the principles of cohort locking for architectures with deep NUMA hierarchies. We describe analytical models for throughput and fairness of CohortMCS (C-MCS) and Hierarchical MCS (HMCS) locks that enable us to tailor these locks for high performance on any target platform without empirical tuning. Using these models, one can select parameters such that an HMCS lock will deliver better fairness than a C-MCS lock for a given throughput, or deliver better throughput for a given fairness.Our experiments show that, under high contention, a three-level HMCS lock delivers up to 7.6x higher lock throughput than a C-MCS lock on a 128-thread IBM Power 755 and a five-level HMCS lock delivers up to 72x higher lock throughput on a 4096-thread SGI UV 1000. On the K-means clustering code from the MineBench suit, a three-level HMCS lock reduces the running time by up to 55% compared to the C-MCS lock on a IBM Power 755.
更多
查看译文
关键词
NUMA,MCS,Hierarchical locks,Spin locks,Analytical modeling,Lock fairness,Lock throughput
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要