AI helps you reading Science

AI generates interpretation videos

AI extracts and analyses the key points of the paper to generate videos automatically


pub
Go Generating

AI Traceability

AI parses the academic lineage of this thesis


Master Reading Tree
Generate MRT

AI Insight

AI extracts a summary of this paper


Weibo:
The proposed approach improves the current Lyapunov-based LPV approach using an accurate switched linear parameter-varying model and a nonsmooth Lyapunov function that is automatically selected to reflect the parameter-dependency of the system dynamics

Modeling and H∞ control for switched linear parameter-varying missile autopilot

Control Systems Technology, IEEE Transactions, no. 6 (2003): 830-838

Cited: 70|Views42
EI WOS
Full Text
Bibtex
Weibo

Abstract

This paper presents a new method for designing a gain-scheduled missile autopilot. The nonlinear missile dynamics are modeled as a switched linear parameter-varying (SLPV) system, as is also common for many hybrid system models. A gain-scheduled autopilot for the SLPV system is then designed using a new synthesis technique that is based o...More

Code:

Data:

0
Introduction
  • M ISSILES are very complex systems that are typically nonminimum phase and have a large variation in the system dynamics [7], [16].
  • High-performance autopilots have been designed by numerous researchers using various linearization approaches (e.g., input–output feedback linearization, extended linearization for gain-scheduling, a linear parameter-varying (LPV) system, and a second-order quasi-LPV system).
  • These design techniques are based on the fundamental assumption that the system dynamics and corresponding controllers are smooth.
  • This paper investigates a new nonsmooth linearization approach using a switched linear parameter-varying (SLPV) system and illustrates how this approach can be used to design a missile autopilot
Highlights
  • M ISSILES are very complex systems that are typically nonminimum phase and have a large variation in the system dynamics [7], [16]
  • The linearized system model used in these approaches is typically either a linear time-invariant (LTI) system or an infinite set of linear time-invariant systems, which can result in computational problems in the autopilot design
  • The switched linear parameter-varying approach first derives an accurate switched linear parameter-varying model and designs a controller using a parameter-dependent Lyapunov functions that is automatically selected to reflect the parameter-dependency of the system dynamics
  • This paper presents an extended LPV method to design a gain-scheduled missile autopilot: first models the original nonlinear dynamics with a switched linear parameter-varying system and design a switched linear parameter-varying autopilot with a nonsmooth LPV synthesis technique
  • The proposed approach improves the current Lyapunov-based LPV approach using an accurate switched linear parameter-varying model and a nonsmooth Lyapunov function that is automatically selected to reflect the parameter-dependency of the system dynamics
  • The method proposed in the paper yields a reliable gain-scheduled autopilot with better performance than the LPV autopilots available from the literature
Conclusion
  • This paper presents an extended LPV method to design a gain-scheduled missile autopilot: first models the original nonlinear dynamics with a SLPV system and design a SLPV autopilot with a nonsmooth LPV synthesis technique.
  • The proposed approach improves the current Lyapunov-based LPV approach using an accurate SLPV model and a nonsmooth Lyapunov function that is automatically selected to reflect the parameter-dependency of the system dynamics.
  • The extended LPV approach eliminates the standard gridding technique for the LPV synthesis in a less conservative way than the published approaches.
  • The method proposed in the paper yields a reliable gain-scheduled autopilot with better performance than the LPV autopilots available from the literature
Tables
  • Table1: RELATIVE ROOT-MEAN-SQUARE OF E IN (%) VERSUS NUMBER OF PARTITIONS (N)
Reference
  • P. Apkarian and R. Adams, “Advanced gain-scheduling techniques for uncertain systems,” IEEE Trans. Contr. Syst. Technol., vol. 6, pp. 21–31, 1998. H [2] P. Apkarian and P. Gahinet, “A convex characterization of gain-scheduled controllers,” IEEE Trans. Automat. Contr., vol. 40, pp.
    Google ScholarLocate open access versionFindings
  • [3] T. Azuma, R. Watanabe, and K. Uchida, “An approach to solving parameter-dependent LMI conditions based on finite number of LMI conditions,” in Proc. ACC, 1997, pp. 510–514.
    Google ScholarLocate open access versionFindings
  • [4] G. Becker, “Additional results on parameter-dependent controllers for LPV systems,” in IFAC 13th TWC, San Francisco, CA, 1996, pp.
    Google ScholarFindings
  • [5] G. Becker and A. Packard, “Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback,” Syst. Contr. Lett., vol. 23, pp. 205–215, 1994.
    Google ScholarLocate open access versionFindings
  • [6] S. Bennani, D. Willemsen, and C. Scherer, “Robust control of linear parametrically varying systems with bounded rates,” J. Guid. Contr. Dynam., vol. 21, pp. 916–922, 1998.
    Google ScholarLocate open access versionFindings
  • [7] E. Devaud, J. Harcaut, and H. Siguerdidjane, “Three-axes missile autopilot design: From linear to nonlinear control strategies,” J. Guid. Contr. Dynam., vol. 24, no. 1, pp. 64–71, 2001.
    Google ScholarLocate open access versionFindings
  • [8] P. Gahinet, P. Apkarian, and M. Chilali, “Affine parameter-dependent Lyapunov functions and real parametric uncertainty,” IEEE Trans. Automatic Contr., vol. 41, pp. 437–442, 1996.
    Google ScholarLocate open access versionFindings
  • [9] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, The LMI Control Toolbox: The MathWorks Inc., 1995.
    Google ScholarFindings
  • [10] L. Ghaoui and J. Folcher, “Multiobjective robust control of LTI systems subject to unstructured perturbations,” Syst. Contr. Lett., vol. 28, no. 1, pp. 23–30, 1996.
    Google ScholarLocate open access versionFindings
  • [11] J. Imura and A. van der Shaft, “Characterization of well-posedness of piecewise linear systems,” IEEE Trans. Automatic Contr., vol. 45, pp. 1600–1619, 2000. L [12] ̇I. Köse, F. Jabbari, and W. Schmitendorf, “A direct characterization of -gain controllers for LPV system,” in Proc. IEEE CDC, 1996, pp. 3990–3995.
    Google ScholarLocate open access versionFindings
  • [13] S. Lim and J. How, “Analysis of linear parameter-varying systems using a nonsmooth dissipative systems framework,” Int. J. Robust Nonlinear Contr., vol. 12, pp. 1067–1092, 2002.
    Google ScholarLocate open access versionFindings
  • [14] S. Lim, “Analysis and control of linear parameter-varying systems,” Ph.D. dissertation, Dept. Aeronaut. Astronaut., Stanford Univ., CA, L 1999.
    Google ScholarFindings
  • [15] S. Lim and J. How, “Application of improved -gain synthesis on LPV H missile autopilot design,” in Proc. ACC, 1999, pp. 3733–3737.
    Google ScholarLocate open access versionFindings
  • [16] R. Nichols, R. Reichert, and W. Rugh, “Gain scheduling for controllers: A flight control example,” IEEE Trans. Contr. Syst. Technol., vol. 1, pp. 69–79, 1993.
    Google ScholarLocate open access versionFindings
  • [17] A. Packard, “Gain scheduling via linear fractional transformations,” Syst. Contr. Lett., vol. 22, pp. 79–92, 1994.
    Google ScholarLocate open access versionFindings
  • [18] P. Pellanda, P. Apkarian, and H. Tuan, “Missile autopilot design via a multi-channel LFT/LPV control method,” Int. J. Robust and Nonlinear Contr., vol. 12, pp. 1–20, 2002.
    Google ScholarLocate open access versionFindings
  • [19] A. Rantzer and M. Jahansson, “Piecewise linear quadratic optimal control,” IEEE Trans. Automatic Contr., vol. 45, pp. 629–637, 2000.
    Google ScholarLocate open access versionFindings
  • [20] C. Scherer, R. Njio, and S. Bennani, “Parametrically varying flight control system design with full block scalings,” in Proc. IEEE CDC, 1997, pp. 1501–1515.
    Google ScholarLocate open access versionFindings
  • [21] A. Tsourdos, R. Zbikowski, and B. White, “Robust autopilot for a quasilinear parameter-varying missile model,” J. Guid. Contr. Dynam., vol. 24, no. 2, pp. 287–295, 2001.
    Google ScholarLocate open access versionFindings
  • [22] G. Wood, “Parameter-dependent control of mechanical systems,” Ph.D. dissertation, St. John’s College, Cambridge Univ., 1995.
    Google ScholarFindings
  • [23] F. Wu, “Control of linear parameter varying systems,” Ph.D. dissertation, Univ. California at Berkeley, 1995.
    Google ScholarFindings
  • [24] F. Wu, A. Packard, and G. Balas, “LPV control design for pitch axis H missile autopilot,” in Proc. IEEE CDC, 1995, pp. 188–191.
    Google ScholarLocate open access versionFindings
  • [25] J. Yu and A. Sideris, “ control with parametric lyapunov functions,” in Proc. IEEE CDC, 1996, pp. 2547–2552. Sungyung Lim (A’99) received the B.A.Sc. and S.M. degrees in aerospace engineering from Seoul National University, Seoul, Korea, in 1988 and 1990, respectively. He received the Ph.D. degree in aeronautics and astronautics from Stanford University, Stanford, CA, in 1999.
    Google ScholarLocate open access versionFindings
  • He is currently a Senior Engineering Specialist in the Dynamics and Controls Section, Space Systems/Loral, where he has been since 1998. His current research focuses on: 1) developing computationally efficient analysis and control techniques for nonlinear, hybrid, and distributed systems that are recently emerging from the aerospace engineering; 2) developing advanced analysis and control tools that are in high demand in the current aerospace and related industries; and 3) fundamental research on space systems such as advanced modular design of space systems. Dr. Lim is a Member of AIAA.
    Google ScholarFindings
  • Jonathan P. How received the B.A.Sc. degree in engineering science (aerospace option) from the University of Toronto, Toronto, ON, Canada, in 1987 and the S.M. and Ph.D. degrees in aeronautics and astronautics from the Massachusetts Institute of Technology (MIT), Cambridge, in 1990 and 1993, respectively.
    Google ScholarLocate open access versionFindings
  • He is currently an Associate Professor with the Department of Aeronautics and Astronautics, MIT. He then studied for two years at MIT as a Postdoctoral Associate in charge of the design and analysis of robust controllers for the Middeck Active Control Experiment (MACE), which flew on-board the Space Shuttle Endeavour in March 1995. Prior to joining MIT in 2000, he worked for 5 years as an Assistant Professor with the Department of Aeronautics and Astronautics, Stanford University. His current research focuses on: 1) various aspects of spacecraft navigation, control, and autonomy, including GPS sensing for formation-flying vehicles; 2) optimal coordination and trajectory design for teams of cooperating UAVs; and 3) theoretical analysis and synthesis of robust, hybrid, and adaptive controllers.
    Google ScholarFindings
0
Your rating :

No Ratings

Tags
Comments
avatar
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn