Epigenetic modification of retinoic acid-treated human embryonic stem cells.

BMB REPORTS(2010)

引用 28|浏览7
暂无评分
摘要
Epigenetic modification of the genome through DNA methylation is the key to maintaining the differentiated state of human embryonic stem cells (hESCs), and it must be reset during differentiation by retinoic acid (RA) treatment. A genome-wide methylation/gene expression assay was performed in order to identify epigenetic modifications of RA-treated hESCs. Between undifferentiated and RA-treated hESCs, 166 differentially methylated CpG sites and 2,013 differentially expressed genes were discovered. Combined analysis of methylation and expression data revealed that 19 genes (STAP2, VAMP8, C10orf26, WFIKKN1, ELF3, C1QTNF6, C10orf10, MRGPRF, ARSE, LSAMP, CENTD3, LDB2, POU5F1, GSPT2, THY1, ZNF574, MSX1, SCMH1, and RARB) were highly correlated with each other. The results provided in this study will facilitate future investigations into the interplay between DNA methylation and gene expression through further functional and biological studies. [BMB reports 2010; 43(12): 830-835]
更多
查看译文
关键词
DNA methylation,Epigenetic modification,Gene expression,Human embryonic stem cell,Retinoic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要