AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
We developed simulation models of three tasks relevant to research on schizophrenia: the Stroop task, the continuous performance test, and the lexical disambiguation task described earlier

Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia.

PSYCHOLOGICAL REVIEW, no. 1 (1992): 45-77

引用1690|浏览21
WOS
下载 PDF 全文
引用
微博一下

摘要

Connectionist models are used to explore the relationship between cognitive deficits and biological abnormalities in schizophrenia. Schizophrenic deficits in tasks that tap attention and language processing are reviewed, as are biological disturbances involving prefrontal cortex and the mesocortical dopamine system. Three computer models ...更多

代码

数据

简介
  • A large number of experiments have revealed schizophrenic deficits in information-processing tasks
  • These encompass a variety of different processing domains—including selective attention, signal detection, memory, language processing, and problem solving— the authors believe that many of these may reflect a common underlying deficit: a degradation in the ability to construct and maintain an internal representation of context.
  • By an internal representation of context the authors mean information held in mind in such a form that it can be used to mediate an appropriate behavioral response
  • This can be a set of task instructions, a specific prior stimulus, or the result of processing a sequence of prior stimuli.
  • The authors consider the role that the internal representation of context plays in the task and how schizophrenic deficits in both attention and language performancemay be related to a degradation in this internal representation
重点内容
  • Cognitive Deficits in Schizophrenia

    Disturbances in the Internal Representation of Context

    A large number of experiments have revealed schizophrenic deficits in information-processing tasks
  • We developed simulation models of three tasks relevant to research on schizophrenia: the Stroop task, the continuous performance test, and the lexical disambiguation task described earlier
  • We reviewed data which indicate that prefrontal cortex and its dopaminergic supply are important for the construction and maintenance of internal representations of context and that disturbances in these systems are involved in schizophrenia
  • We presented three models that (a) simulated quantitative aspects of performance in the Stroop task, the Continuous Performance Test, and a lexical disambiguation task; (b) elucidated the role of the internal representation of context— and its relationship to attention—in these various tasks; (c) related behavior in these tasks to biological processes; and (d) identified a specific disturbance in these processes that could account for schizophrenic patterns of performance
  • We have tried to show how the connectionist framework can be brought to bear on the relationship between some of the biological and cognitive disturbances characteristic of schizophrenia
  • The models we have presented suggest that a common information-processing deficit underlies impaired performance in selective attention and language-processing tasks and relate this deficit to decreased dopaminergic activity in prefrontal cortex
结论
  • The authors began by reviewing behavioral data concerning deficits of selective attention and language processing in schizophrenia.
  • The models touch on a number of important issues concerning cognition in both normal subjects and schizophrenics and the biological processes involved.
  • The authors discuss these and consider some of the limitations of the models.
  • Wehope that these models will help providea more refined and integrated approach to the riddle of behavioral and biological disturbances in schizophrenia
表格
  • Table1: Performance of Normal and Schizophrenic Subjects in Three Studies Using the Stroop Task
  • Table2: Role of Context and Response Strength in Cognitive Tasks
Download tables as Excel
基金
  • This work was supported by a National Institute of Mental Health (NIMH) Physician Scientist Award (MH00673) to Jonathan D
  • Part of this work was also supported by a research grant from the Scottish Rite Schizophrenia Research Program, N.M.J., U.S.A., to Jonathan D
  • Our predictions have received preliminary support from data reported by Geraud et al (1987), who found that the prefrontal activity of normal subjects at rest was not increased by the dopamine agonist Pirebdil
引用论文
  • Abramczyk, R. R., Jordan, D. E., & Hegel, M. (1983). "Reverse" Stroop effect in the performance of schizophrenics. Perceptual and Motor Skills, 56, 99-106.
    Google ScholarLocate open access versionFindings
  • American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders (3rd ed., rev). Washington, DC: Author.
    Google ScholarFindings
  • Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
    Google ScholarFindings
  • Andreasen, N. C, Flaum, M., Swayze, V W, Tyrrell, G., & Arndt, S. (1990). Positive and negative symptoms in schizophrenia. Archives of General Psychiatry, 47, 615-621.
    Google ScholarLocate open access versionFindings
  • Andreasen, N. C., Nasrallah, H. A., Dunn, Y, Olson, S. C., Grove, W M., Ehrhardt, J. C., Coffman, J. A., & Crossett, J. H. W (1986). Structural abnormalities in the frontal system of schizophrenia. Archives of General Psychiatry, 43,136-144.
    Google ScholarLocate open access versionFindings
  • Angrist, B., Peselow, E., Rubinstein, M., Wolkin, A., & Rotrosen, J. (1985). Amphetamine response and relapse risk after depot neuroleptic discontinuation. Psychopharmacology, 85, 277-283.
    Google ScholarLocate open access versionFindings
  • Aou, S., Nishino, H., Inokuchi, A., & Mizuno, Y (1983). Influence of catecholamines on reward-related neuronal activity in monkey orbitofrontal cortex. Brain Research, 267,165-170.
    Google ScholarLocate open access versionFindings
  • Asarnow, R. F, & MacCrimmon, D. J. (1978). Residual performance deficit in clinically remitted schizophrenics: A marker of schizophrenia? Journal of Abnormal Psychology, 87, 597-608.
    Google ScholarLocate open access versionFindings
  • Bacopoulos, N. G., Spokes, E. Q, Bird, E. D, & Roth, R. H. (1979). Antipsychotic drug action in schizophrenic patients: Effects oncortical dopamine metabolism after long-term treatment. Science, 205, 1405-1407.
    Google ScholarLocate open access versionFindings
  • Baillargeon, R. (1990, August). Young infants' physical knowledge. Paper presented at the 98th Annual Convention of the American Psychological Association, Boston, MA.
    Google ScholarFindings
  • Bannon, M. H., Freeman, A. S., Chiodo, L. A., Bunney, B. S., & Roth, R. H. (1987). The electrophysiological and biochemical pharmacology of the mesolimbic and mesocortical dopamine neurons. In L. I. Iversen, S. D. Iversen,&S. H. Snyder(Eds-), Handbook of psychopharmacoldgy (Vol. 19, pp. 329-374). New York: Plenum Press.
    Google ScholarLocate open access versionFindings
  • Barone, P., & Joseph, J. P. (1989a). Prefrontal cortex and spatial sequencing in macaque monkey. Experimental Brain Research, 78, 447-464.
    Google ScholarLocate open access versionFindings
  • Barone, P., & Joseph, J. P. (1989b). Role of the dorsolateral prefrontal cortex in organizing visually guided behavior. Brain Behavior and Evolution, 33, 132-135.
    Google ScholarLocate open access versionFindings
  • Benjamin, T. B., & Watt, N. F. (1969). Psychopathology and semantic interpretation of ambiguous words. Journal of Abnormal Psychology, 74,706-714.
    Google ScholarLocate open access versionFindings
  • Berman, K. F, Illowsky, B. P.,& Weinberger,D. R. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: Further evidence for regional and behavioral specificity. Archives of General Psychiatry, 45, 616-622.
    Google ScholarLocate open access versionFindings
  • Berman, K. F, Zee, R. F, & Weinberger, D. R. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: II. Role of neuroleptic treatment, attention and mental effort. Archives of General Psychiatry, 43,126-135.
    Google ScholarLocate open access versionFindings
  • Bianchi, L. (1922). The mechanism of the brain and the function of the frontal lobes. Edinburgh, Scotland: Livingstone.
    Google ScholarFindings
  • Blanley, P. H. (1974). Two studies on the language behavior of schizophrenics. Journal of Abnormal Psychology, 83, 23-31.
    Google ScholarLocate open access versionFindings
  • Bleuler, E. (1911). Dementia praecox, or the group of schizophrenias. New York: International Universities Press.
    Google ScholarFindings
  • Bloom, F. E., Schulman, J. A., & Koob, G. F. (1989). Catecholamines and behavior. In U. Trendelenburg& N. Wiener(Eds.), Handbook of experimental pharmacology (Vol. 90, chap. 11, pp. 27-88). Berlin: Springer-Verlag.
    Google ScholarLocate open access versionFindings
  • Borst, U, & Cohen, R. (1989). Filling the preparatory interval with temporal information or visual noise: The crossover effect in schizophrenics and controls. Psychological Medicine, 19, 865-874.
    Google ScholarLocate open access versionFindings
  • Bowen, F. P., Kamienny, R. S., Burns, M. M., & Yahr, M. D. (1975). Parkinsonism: Effects of L-dopa treatment on concept formation. Neurology, 25, 701-704.
    Google ScholarLocate open access versionFindings
  • Bowers, M. B., Jr., Heninger, G. R., & Sternberg, D. (1980). Clinical processes and central dopaminergic activity in psychotic disorders. Communications in Psychopharmacology, 4,177-188.
    Google ScholarLocate open access versionFindings
  • Broadbent, D. E. (1958). Perception and communication. Elmsford, NY: Pergamon Press.
    Google ScholarFindings
  • Broadbent, D. E. (1971). Decision and stress. San Diego, CA: Academic Press.
    Google ScholarFindings
  • Brozoski, T. I, Brown, R. M., Rosvold, H. E., & Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of Rhesus monkey. Science, 205, 929-931.
    Google ScholarLocate open access versionFindings
  • Buchsbaum, M. S., Ingvar, D. H., Kessler, R., Waters, R. N., Cappelletti, J., van Kammen, D. P., King, C. A., Johnson, J. L., Manning, R. G, Flynn, R. W, Mann, L. S., Bunny, W E., & Sokoloff, L. (1982). Cerebral glucography with positron tomography. Archives of General Psychiatry, 39, 251-259.
    Google ScholarLocate open access versionFindings
  • Bunney, B. S., & Aghajanian, G. K. (1976). Dopamine and norepinephrine innervated in the rat prefrontal cortex: Pharmacological differentiation using microiontophoretic techniques. Life Sciences, 19, 1783-1792.
    Google ScholarLocate open access versionFindings
  • Bunney, B. S., & Sesack, S. R. (1987). Electrophysiological identification and pharmacological characterization of dopamine sensitive neurons in the rat prefrontal cortex. In L. A. Chiodo & A. S. Freeman (Eds.), Neurophysiology of dopaminergic systems—Current status and clinical perspectives (pp. 129-140). Grosse Pointe, MI: Lakeshore.
    Google ScholarLocate open access versionFindings
  • Burnod, Y, & Korn, H. (1989). Consequences of stochastic release of neurotransmitters for network computation in the central nervous system. Proceedings of the National Academy of Science (U.S.A.), 86, 352-356.
    Google ScholarLocate open access versionFindings
  • Calev, A. (1983). Anti-cholinergic drugs and memory. British Journal of Psychiatry, 143, 422-423.
    Google ScholarLocate open access versionFindings
  • Chapman, L. J. (1980). Recent advances in the study of schizophrenic cognition. Schizophrenia Bulletin, 5(4), 69-81.
    Google ScholarLocate open access versionFindings
  • Chapman, L. J., & Chapman, J. P. (1978). The measurement of differential deficit. Journal of Psychiatric Research, 14, 303-311.
    Google ScholarLocate open access versionFindings
  • Chapman, L. J., Chapman, J. P., & Miller, G. A. (1964). A theory of verbal behavior in schizophrenia. In B. A. Maher (Ed.), Progress in experimental personality research (Vol. 1, pp. 135-167). San Diego, CA: Academic Press.
    Google ScholarLocate open access versionFindings
  • Chiodo, L. A., & Berger, T. W (1986). Interactions between dopamine and amino acid-induced excitation and inhibition in the striatum. Brain Research, 375,198-203.
    Google ScholarLocate open access versionFindings
  • Chiodo, L. A., & Bunney, B. S. (1983). Typical and atypical neuroleptics: Differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. Journal of Neuroscience, 3,1607-1619.
    Google ScholarLocate open access versionFindings
  • Cleeremans, A., Servan-Schreiber, D, & McClelland, J. L. (1989). Finite state automata and simple recurrent networks. Neural'Computation, /, 372-381.
    Google ScholarLocate open access versionFindings
  • Cohen, B. M. (1981). Dopamine receptors and antipsychotic drugs. McLean HospitalJoumal, 1(2), 95-115.
    Google ScholarLocate open access versionFindings
  • Cohen, J. D, Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing model of the Stroop effect. Psychological Review, 97, 332-361.
    Google ScholarLocate open access versionFindings
  • Cohen, J. D., Targ, E., Kristoffersen, X, &Spiegel, D. (1988). The fabric of thought disorder: Disturbances in the processing of context. Unpublished manuscript.
    Google ScholarFindings
  • Cohen, R., Borst, U, & Rist, F. (1989). Cross-over and cross-modality effects in schizophrenia: Some old and some new data. Unpublished manuscript.
    Google ScholarFindings
  • Cohen, R. M, Semple, W E., Gross, M., Holcomb, H. H., Dowling, M. S., & Nordahl, T. E. (1988). Functional localization of sustained attention: Comparison to sensory stimulation in the absence of instruction. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 1, 2-20.
    Google ScholarLocate open access versionFindings
  • Cohen, R. M., Semple, W E., Gross, M., Nordahl, T. E., DeLisi, L. E., Holcomb, H. H., King, A. C, Morihisa, J. M., & Pickar, D. (1987). Dysfunction in a prefrontal substrate of sustained attention in schizophrenia. Life Sciences, 40, 2031-2039.
    Google ScholarLocate open access versionFindings
  • Cohen, R. M., Semple, W E., Gross, M., Nordahl, T. E., Holcomb, H. H., Dowling, M. S., & Pickar, D. (1988). The effect of neuroleptics on dysfunction in a prefrontal substrate of sustained attention in schizophrenia. Life Sciences, 43,1141-1150.
    Google ScholarFindings
  • Conrad, A. J., Abebe, R., & Austin, R. (1991). Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Archives of General Psychiatry, 48, 413-417.
    Google ScholarLocate open access versionFindings
  • Cornblatt, B., Lenzenweger, M. E, & Erlenmeyer-Kimling, L. (1989). A continuous performancetest, identical pairs version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Research, 29, 65-85.
    Google ScholarLocate open access versionFindings
  • Corwin, J. V, Kanter, S., Watson, R. X, Heilman, K. M., Valenstein, E., & Hashimoto, A. (1986). Apomorphine has a therapeutic effect on neglect produced by unilateral dorsomedial prefrontal cortex lesions in rats. Experimental Neurology, 94, 683-698.
    Google ScholarLocate open access versionFindings
  • Cozolino, L. J. (1983). The oral and written productions of schizophrenic patients. In B. A. Maher(Ed.), Progress in experimental personality research (Vol. 12, pp. 101-152). San Diego, CA: Academic Press.
    Google ScholarLocate open access versionFindings
  • Creese, L, Burt, D. R., & Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192, 481-483.
    Google ScholarLocate open access versionFindings
  • Cross, A. J., Crow, X J., & Owen, F.(1981). 3-H-flupenthixol bindingin post-mortem brains of schizophrenics: Evidence for a selective increase in dopamine D2 receptors. Psychopharmacology, 74, 122124.
    Google ScholarLocate open access versionFindings
  • Crosson, B., & Hughes, C. W (1987). Role of the thalamus in language: Is it related to schizophrenic thought disorder? Schizophrenia Bulletin, 13(4), 605-621.
    Google ScholarLocate open access versionFindings
  • Crow, X J. (1980). Molecular pathology of schizophrenia: More than one disease process? British MedicalJournal, 137, 383-386.
    Google ScholarLocate open access versionFindings
  • Crow, X1, Cross, A. J., Johnson, J. A., Johnstone, E. C., Joseph, M. H., Owen, F, Owens, D. G. C, & Poulter, M. (1984). Catecholamines and schizophrenia: An assessment of the evidence. In A. R. Liss (Ed.), Catecholamines: Neumpharmacology and central nervous systemtherapeutic aspects (pp. 11-20). New York: A. R. Liss. Damasio, A. R. (1979). The frontal lobes. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp. 339-375). New \brk: Oxford University Press.
    Google ScholarLocate open access versionFindings
  • Davidson, M., Keefe, R. S. E., Mohs, R. C, Siever, L. J., Losonczy, M. F, Horvath, T. B., & Davis, K. L. (1987). L-dopa challenge and relapse in schizophrenia. American Journal of Psychiatry, 144,934-938.
    Google ScholarLocate open access versionFindings
  • Dehaene, S, & Changeux, J. P. (1989). A simple model of prefrontal cortex function in delayed-response tasks. Journal of Cognitive Neuroscience, 1, 244-261.
    Google ScholarLocate open access versionFindings
  • Dehaene, S., & Changeux, J. P. (1991). The Wisconsin Card Sorting Test: Theoretical analysis and modeling in a neuronal network. Cerebral Cortex, /, 62-79.
    Google ScholarLocate open access versionFindings
  • Deutch, A. Y, Clark, W A., & Roth, R. H. (1990). Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Research, 521, 311-315.
    Google ScholarLocate open access versionFindings
  • Diamond, A. (1985). Developmental of the ability to use recall to guide action, as indicated by infants' performance on A B. Child Development, 56, 868-883.
    Google ScholarLocate open access versionFindings
  • Diamond, A. (1990a). The development and neural bases of memory functions as indexed by the A B and delayed response tasks in human infants and infant monkeys. In A. Diamond (Ed.), The development and neural bases of higher cognitive functions (pp. 267-317). New York: NY Academy of Science Press.
    Google ScholarLocate open access versionFindings
  • Diamond, A. (1990b). Rate of maturation of the hippocampus and the developmental progression of children's performance on the delayed non-matching to sample and visual paired comparison tasks. In A. Diamond (Ed.), The development and neural bases of higher cognitive functions (pp. 394-426). New York: NY Academy of Science Press.
    Google ScholarLocate open access versionFindings
  • Diamond, A. (1990c). Developmental time course in human infants and infant monkeys and the neural bases of inhibitory control in reaching. In A. Diamond (Ed.), The development and neural bases of higher cognitive functions (pp. 637-676). New \brk: NY Academy of Science Press.
    Google ScholarLocate open access versionFindings
  • Diamond, A., & Doar, B. (1989). The performance of human infants on a measure of frontal cortex function, the delayed response task. Developmental Psychobiology, 22(3), 271-294.
    Google ScholarLocate open access versionFindings
  • Diamond, A., & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget's A B task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research, 74, 24-40.
    Google ScholarLocate open access versionFindings
  • Dunbar, K., & MacLeod, C. M. (1984). A horse race of a different color: Stroop interference patterns with transformed words. Journal of Experimental Psychology: Human Perception and Performance, 10, 622-639.
    Google ScholarLocate open access versionFindings
  • Duncan, J. (1986). Disorganisation of behaviour after frontal lobe damage. Cognitive Neuropsychology, 3(3), 271-290.
    Google ScholarLocate open access versionFindings
  • Dyer, F. N. (1973). The Stroop phenomenon and its use in the study of perceptual, cognitive, and response processes. Memory and Cognition, 1,106-120.
    Google ScholarFindings
  • Early, T. S., Posner, M. I., Reiman, E. M., & Raichle, M. E. (1989). Hyperactivity of the left striato-pallidal projection: Part I. Lower level theory. Psychiatric Development, 2, 85-108.
    Google ScholarLocate open access versionFindings
  • Early, T. S., Reiman, E. M., Raichle, M. E., & Spitznagel, E. L. (1987). Left globus pallidusabnormality in never-medicated patients with schizophrenia. Proceedings of the National Academy of Science (U.S.A.), 84, 561-563.
    Google ScholarLocate open access versionFindings
  • Erlenmeyer-Kimling, L., & Cornblatt, B. (1978). Attentional measures in a study of children at high-risk for schizophrenia. Journal of Psychiatric Research, 14, 93-98.
    Google ScholarLocate open access versionFindings
  • Fowler, J. S. (1984). Regional brain glucose metabolism in chronic schizophrenia. Archives of General Psychiatry, 41, 293-300.
    Google ScholarLocate open access versionFindings
  • Perron, A., Thierry, A. M., Le Douarin, C., & Glowinski, J. (1984). Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Research, 302, 257-265.
    Google ScholarLocate open access versionFindings
  • Foote, S. L., Freedman, R., & Oliver, A. P. (1975). Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Research,86, 229-242.
    Google ScholarLocate open access versionFindings
  • Franzen, G., & Ingvar, D. H. (1975). Abnormal distribution of cerebral activity in chronic schizophrenia. Journal of Psychiatric Research, 12, 199-214.
    Google ScholarLocate open access versionFindings
  • Freeman, W J. (1979). Nonlinear gain mediating cortical stimulus-response relations. Biological Cybernetics, 33, 243-247.
    Google ScholarLocate open access versionFindings
  • Freund, T. F.,Powell,J. F., &Smith, A. D. (1984). Ultrastructural immunocytochemical localization of tyrosine hydroxylasein the neostriatum. Neuroscience, 13,1189-1215.
    Google ScholarFindings
  • Fuster, J. M. (1980). The prefrontal cortex. New York: Raven Press.
    Google ScholarFindings
  • Fuster, J. M. (1985a). The prefrontal cortex and temporal integration. In A. Peters & E. G. Jones (Eds.), Cerebral cortex (pp. 151-177). New York: Plenum Press.
    Google ScholarLocate open access versionFindings
  • Fuster, J. M. (1985b). The prefrontal cortex, mediator of cross-temporal contingencies. Human Neurobiology, 4,169-179.
    Google ScholarLocate open access versionFindings
  • Garmezy, N. (1977). The psychology and psychopathology of attention. Schizophrenia Bulletin, 3, 360-369.
    Google ScholarLocate open access versionFindings
  • Geraud, G., Arne-Bes,M. C., Guell, A., & Bes, A. (1987). Reversibility of hemodynamic hypofrontality in schizophrenia. Journal of Cerebral Blood Flow and Metabolism, 7, 9-12.
    Google ScholarLocate open access versionFindings
  • Geyer, M. A., & Braff, D. L. (1987). Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophrenia Bulletin, 13(4), 643-688.
    Google ScholarLocate open access versionFindings
  • Gjerde, P. F. (1983). Attentional capacity dysfunction and arousal in schizophrenia. Psychological Bulletin, 93, 57-72.
    Google ScholarLocate open access versionFindings
  • Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H., & Podd, M. H. (1987). Further evidence of dementia of the prefrontal type in schizophrenia? Archives of General Psychiatry, 44, 10081014.
    Google ScholarLocate open access versionFindings
  • Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum (Ed.), Handbook of physiology—The nervous system, K(pp. 373417). Bethesda, MD: American Physiological Society.
    Google ScholarLocate open access versionFindings
  • Goldman-Rakic, P.S.(1991). Prefrontal cortical dysfunction in schizophrenia: The relevance of working memory. In B. Caroll (Ed.), Psychopathology and the brain (pp. 1-23). New York: Raven Press.
    Google ScholarLocate open access versionFindings
  • Goldman-Rakic, P.S., Leranth, C., Wallns, S. M., Mons, N., & Geffard, M. (1989). Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proceedings of the National Academy of Science, 86,915.
    Google ScholarLocate open access versionFindings
  • Grace, T. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1-24.
    Google ScholarLocate open access versionFindings
  • Grand, S., Steingart, I., Freedman, N., & Buchwald, C. (1975). Organization of language behavior and cognitive performance in chronic schizophrenia. Journal of Abnormal Psychology, 84, 621-628.
    Google ScholarLocate open access versionFindings
  • Grant, D. A., & Berger, E. A. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl type card sorting problem. Journal of Experimental Psychology, 38, 404411.
    Google ScholarLocate open access versionFindings
  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Huntington, NY: Robert E. Krieger.
    Google ScholarFindings
  • Gur, R. E., Resnick, S. M., Gur, R. C, Alavi, A., Caroff, S., Kushner, M., & Reivich, M. (1987). Regional brain function in schizophrenia.
    Google ScholarFindings
  • Harvey, R D. (1983). Speech competence in manic and schizophrenic psychoses: The association between clinically rated thought disorder and cohesion and referenceperformance.Journal of Abnormal Psychology, 92, 368-377.
    Google ScholarLocate open access versionFindings
  • Hinton, G. E., & Shallice, T. (1991). Lesioning an attractor network: Investigations of acquired dyslexia. Psychological Review, 98,74-95.
    Google ScholarLocate open access versionFindings
  • Hoffman, R. E. (1987). Computer simulations of neural information processing and the schizophrenia-mania dichotomy.Archives of General Psychiatry, 44, 178-188.
    Google ScholarLocate open access versionFindings
  • Hu, X. T, & Wang, R. Y. (1988). Comparison of effects of D, and D2 dopamine receptor agonists on neurons in the rat caudate putamen: An electrophysiological study. The Journal of Neuroscience, 8, 43404348.
    Google ScholarLocate open access versionFindings
  • Ingvar, D. H., & Franzen, G. (1974). Abnormalities of cerebral flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica, 50, 425-462.
    Google ScholarLocate open access versionFindings
  • Janowsky, D. S., Huey, L., Storms, L., & Judd, L. L. (1977). Methylphenidate hydrochloride effects on psychological tests in acute schizophrenic and nonpsychotic patients. Archives of General Psychiatry, 34,189-194.
    Google ScholarLocate open access versionFindings
  • Janowsky, D. S., & Rich, C. (1979). Amphetamine psychosis and psychotic symptoms. Psychopharmacology, 65, 73-77.
    Google ScholarLocate open access versionFindings
  • Joseph, M. H., Frith, C. D., & Waddington, J. L. (1979). Dopaminergic mechanisms and cognitivedeficits in schizophrenia. Psychopharmacology, 63, 273-280.
    Google ScholarLocate open access versionFindings
  • Karoum, F., Karson, C. N., Bigelow, L. B., Lawson, W B., & Wyatt, R. J. (1987). Preliminary evidence of reduced combined output of dopamine and its metabolites in chronic schizophrenia. Archives of General Psychiatry, 44, 604-607.
    Google ScholarLocate open access versionFindings
  • Koh, S. D. (1978). Remembering of verbal material by schizophrenic young adults. In S. Schwartz (Ed.), Language and cognition in schizophrenia (pp. 55-99). Hillsdale, NJ: Erlbaum.
    Google ScholarLocate open access versionFindings
  • Kolb, B., & Whishaw, I. Q. (1983). Performance of schizophrenic patients on tests sensitive to left or right frontal, temporal, or parietal function in neurologic patients. Journal of Mental and Nervous Disease, 777,435-443.
    Google ScholarLocate open access versionFindings
  • Kopfstein, J. H., & Neale, J. M. (1972). A multivariate study of attention dysfunction in schizophrenia. Journal of Abnormal Psychology, 3, 294-298.
    Google ScholarLocate open access versionFindings
  • Kornetsky, C. (1972). The use of a simple test of attention as a measure of drug effects in schizophrenic patients. Psychopharmacologia (Berlin), 8, 99-106.
    Google ScholarLocate open access versionFindings
  • Kornetsky, C., & Orzack, M. H. (1978). Physiological and behavioral correlates of attention dysfunction in schizophrenic patients. Journal of Psychiatric Research, 14, 69-79.
    Google ScholarLocate open access versionFindings
  • Kovelman, J. A., & Scheibel, A. B. (1984). A neurohistological correlate of schizophrenia. BiologicalPsychiatry, 19, 1601-1621.
    Google ScholarLocate open access versionFindings
  • Kraeplin, E. (1950). Dementia praecox and paraphrenia (J. Zinkin, Trans.). New \brk: International Universities Press.
    Google ScholarFindings
  • Lake, C. R., Sternberg, D. E., van Kammen, D. P., Ballenger, J. C., Ziegler, M. G., Post, R. M., Kopin, I. J., & Bunney, W E. (1980). Schizophrenia: Elevated cerebrospinal fluid norepinephrine. Science, 207, 331-333.
    Google ScholarLocate open access versionFindings
  • Lang, P. I, & Buss, A. H. (1965). Psychological deficit in schizophrenia: II. Interference and activation. Journal of Abnormal Psychology, 70, 77-106.
    Google ScholarLocate open access versionFindings
  • Larsen, S. E, & Fromholt, P. (1976). Mnemonic organization and free recall in schizophrenia. Journal of Abnormal Psychology, 85,61-65.
    Google ScholarLocate open access versionFindings
  • Lehky, S. R., & Sejnowski, T. J. (1988). Network model of shape-fromshading: Neural function arises from both receptive and projective fields. Nature, 333, 452-454.
    Google ScholarLocate open access versionFindings
  • Levin, S. (1984). Frontal lobe dysfunctions in schizophrenia—II. Impairments of psychological and brain functions. Journal of Psychiatry Research, 18(\), 51-12.
    Google ScholarLocate open access versionFindings
  • Levin, S., Yurgelun-Todd, D, & Craft, S. (1989). Contributions of clinical neuropsychology to the study of schizophrenia. Journal of Abnormal Psychology, 98, 341-356.
    Google ScholarLocate open access versionFindings
  • Lieberman, J. A., Kane, J. M., Gadaleta, D., Brenner, R., Lesser, M. S., & Kinon, B. (1984). Methylphenidate challenge as a predictor of relapse in schizophrenia. American Journal of Psychiatry, 141, 633638.
    Google ScholarLocate open access versionFindings
  • Losonczy, M. E, Davidson, M., & Davis, K. L. (1987). The dopamine hypothesis of schizophrenia. In H. Y. Meltzer (Ed.), Psychopharmacology: The third generation of progress (pp. 715-726). New York: Raven Press.
    Google ScholarLocate open access versionFindings
  • Luria, A. R. (1966). Higher cortical functions in man. London: Tavistock.
    Google ScholarFindings
  • Mackay, A. V P. (1980). Positive and negative schizophrenic symptoms and the role of dopamine. British Journal of Psychiatry, 137, 379386.
    Google ScholarLocate open access versionFindings
  • MacLeod, C. M. (1991). Haifa century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109,163-203.
    Google ScholarLocate open access versionFindings
  • Maher, B. A. (1972). The language of schizophrenia: A review and interpretation. British Journal of Psychiatry, 120, 3-17.
    Google ScholarLocate open access versionFindings
  • Malmo, H. P. (1974). On frontal lobe functions: Psychiatric patient controls. Cortex, 10, 231-237.
    Google ScholarLocate open access versionFindings
  • McClelland, J. L. (1988). Connectionist models and psychological evidence. Journal of Memory and Language, 27,107-123.
    Google ScholarLocate open access versionFindings
  • McClelland, J. L., & Rumelhart, D. E. (Eds.). (1986). Parallel distributed processing explorations in the microstructure of cognition. Vol. 2: Psychological and biological models. Cambridge, MA: MIT Press.
    Google ScholarFindings
  • McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing. A handbook of models, programs, and exercises. Cambridge, MA: MIT Press.
    Google ScholarFindings
  • McCulloch, J., Savaki, H. E., McCulloch, M. C., Jehle, J., &Sokoloff, L. (1982). The distribution of alterations in energy metabolism in the rat brain produced by apomorphine. Brain Research, 243, 67-80.
    Google ScholarLocate open access versionFindings
  • McGhie, A. (1970). Attention and perception in schizophrenia. In B. A. Maher (Ed.), Progress in experimental personality research (Vol. 5, pp. 1-36). San Diego, CA: Academic Press.
    Google ScholarLocate open access versionFindings
  • McGhie, A., & Chapman, J. (1961). Disorders of attention and perception in early schizophrenia. British Journal of Medical Psychology, 34,103-116.
    Google ScholarLocate open access versionFindings
  • Meltzer, H. Y, & Stahl, S. M. (1976). The dopamine hypothesis of schizophrenia: A review. Schizophrenia Bulletin, 2,19-76.
    Google ScholarLocate open access versionFindings
  • Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90-100.
    Google ScholarLocate open access versionFindings
  • Mirsky, A. E, DeLisi, L. E., Buchsbaum, M. S., Quinn, O. W, Schwerdt, P., Siever, L. J., Mann, L., Weingartner, H., Zee, R., Sostek, A., Alterman, I., Revere, V, Dawson, S. D, & Zahn, T. P. (1984). The Genain quadruplets: Psychological studies. Psychiatry Research, 13, 77-93.
    Google ScholarLocate open access versionFindings
  • Mishkin, M., & Pribram, K. H. (1955). Analysis of the effects of frontal lesions in monkey. I. Variations on delayed alternation. Journal of Comparative and Physiological Psychology, 338, 492-495.
    Google ScholarLocate open access versionFindings
  • Morihisa, J. M., & McAnulty, G. B. (1985). Structure and function: Brain electrical activity mapping and computed tomography in schizophrenia. Biological Psychiatry, 20, 3-19.
    Google ScholarLocate open access versionFindings
  • Nauta, J. H. W, & Domesick, V B. (1981). Ramificationsof the limbic system. In S. Matthysse (Ed.), Psychiatry and the biology of the human brain: A symposium dedicated to Seymour S. Kety (pp. 165188). New York: Elsevier/North-Holland.
    Google ScholarLocate open access versionFindings
  • Neale, J. M. (1971). Perceptual span in schizophrenia. Journal of Abnormal Psychology, 77,196-204.
    Google ScholarLocate open access versionFindings
  • Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12, 313-324.
    Google ScholarLocate open access versionFindings
  • Nuechterlein, K. H. (1977). Reaction time and attention in schizophrenia: A critical evaluation of the data and theories. Schizophrenia Bulletin, 3, 373-428.
    Google ScholarLocate open access versionFindings
  • Nuechterlein, K. H. (1983). Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. Journal of Abnormal Psychology, 92, 4-28.
    Google ScholarLocate open access versionFindings
  • Nuechterlein, K. H. (1984). Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophrenia Bulletin, 10,160-203.
    Google ScholarLocate open access versionFindings
  • Oades, R. D. (1981). Dopaminergic agonist and antagonistic drugs in the ventral tegmentum of rats inhibit and facilitate changes of food search behaviour. Neuroscience Letters, 27, 75-80.
    Google ScholarLocate open access versionFindings
  • Oltmanns, T. E, & Neale, J. M. (1975). Schizophrenic performance when distractors are present: Attentional deficit or differential task difficulty? Journal of Abnormal Psychology, 84, 205-209.
    Google ScholarLocate open access versionFindings
  • Parasuraman, R. (1979). Memory load and event rate control sensitivity decrements in sustained attention. Science, 205, 924-927.
    Google ScholarLocate open access versionFindings
  • Passingham, R. E. (1985). Memory of monkeys (Macaco mulatto) with lesions in prefrontal cortex. Behavioral Neuroscience, 99, 3-21.
    Google ScholarLocate open access versionFindings
  • Patterson, K., Seidenberg, M. S., & McClelland, J. L. (1989). Connections and disconnections: Acquired dyslexia in a computational model of reading processes. In R. G. M. Morris (Ed.), Parallel distributed processing: Implications for psychology and neurobiology: Oxford: Clarendon Press.
    Google ScholarLocate open access versionFindings
  • Ferret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12, 323-330.
    Google ScholarLocate open access versionFindings
  • Piaget, J. (1954). The origins of intelligence in children. New \brk: Basic Books. (Original work published 1937)
    Google ScholarFindings
  • Pickar, D., Labarca, R., Linnoila, M., Roy, A., Hommer, D., Everett, D., & Paul, S. M. (1984). Neuroleptic-induced decrease in plasma homovanillic acid and antipsychotic activity in schizophrenic patients. Science, 225, 954-957.
    Google ScholarLocate open access versionFindings
  • Pickel, V M., Beckley, S., Joh, T. H., & Reis, D. J. (1981). Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Brain Research,225, 373-385.
    Google ScholarLocate open access versionFindings
  • Printz, H., & Servan-Schreiber, D. (1990). Foundations of a computationaltheory of 'catecholamine effects (Tech. Rep. CMU-CS-90-105). Pittsburgh, PA: Carnegie Mellon University, School of Computer Science.
    Google ScholarFindings
  • Pycock, C. J., Kerwin, R. W, & Carter, C. J. (1980). Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature, 286, 74-77.
    Google ScholarLocate open access versionFindings
  • Reader, T. A., Perron, A., Descarries, L., & Jasper, H. H. (1979). Modulatory role for biogenic amines in the cerebral cortex: Microiontophoretic studies. Brain Research, 160, 217-229.
    Google ScholarLocate open access versionFindings
  • Robinson, A. L., Heaton, R. K., Lehman, R. A. W, & Stilson, D. W (1980). The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of Consulting and Clinical Psychology, 48, 605-614.
    Google ScholarLocate open access versionFindings
  • Rochester, S. R., & Martin, J. R. (1979). Crazy talk: A study in the discourse of schizophrenic speakers. New York: Plenum Press.
    Google ScholarFindings
  • Rosenkilde, K. E. (1979). Functional heterogeneity of the prefrontal cortex in the monkey: A review.Behavioral Neural Biology, 25, 301 345.
    Google ScholarLocate open access versionFindings
  • Rosvold, K. E., Mirsky, A. E, Sarason, L, Bransome, E. D., & Beck, L. H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20, 343-350.
    Google ScholarLocate open access versionFindings
  • (1961). The effect of frontal-lobe damage on delayed response performance in chimpanzees. Journal of Comparative and Physiological Psychology, 54, 368-374.
    Google ScholarLocate open access versionFindings
  • Roth, R. H., Bacopoulos, N. G., Bustos, G., & Redmond, D. E. (1980). Antipsychotic drugs: Differential effects on dopamine neurons in basal ganglia and mesocortex following chronic administration in human and non-human primates. In F. Cattabeni, G. Racagni, P. F. Spano, & E. Costa (Eds.), Advances in biochemical psychopharmacology(Vol. 24, pp. 513-520). New York: Raven Press.
    Google ScholarLocate open access versionFindings
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by backpropagating errors. Nature, 323, 533-536.
    Google ScholarLocate open access versionFindings
  • Rumelhart, D. E., & McClelland, J. L. (1986a). On learning the past tense of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 2: Psychological and biological models (pp. 216-271). Cambridge, MA: MIT Press.
    Google ScholarLocate open access versionFindings
  • Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986b). Parallel distributed processing: Explorations in the microstructure of cognition.Vol. 1: Foundations. Cambridge, MA: MIT Press.
    Google ScholarFindings
  • Rumelhart, D. E., & McClelland, J. L. (1986c). PDP models and general issues in cognitive science. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations (pp. 110-146). Cambridge, MA: MIT Press.
    Google ScholarLocate open access versionFindings
  • Rund, B. R., & Landro, R. (1990). Information processing: A new model for understanding cognitive disturbances in psychiatric patients. Acta Psychiatrica Scandinavica, 81, 305-316.
    Google ScholarLocate open access versionFindings
  • Rutschmann, J., Cornblatt, B., & Erlenmeyer-Kimling, L. (1977). Sustained attention in children at risk for schizophrenia. Archives of General Psychiatry, 34, 571-575.
    Google ScholarLocate open access versionFindings
  • Rutter, D. R. (1979). The reconstruction of schizophrenic speech. British Journal of Psychiatry, 134, 356-359.
    Google ScholarLocate open access versionFindings
  • Salzinger, K. (1971). An hypothesis about schizophrenic behavior. American Journal of Psychotherapy, 25, 601-614.
    Google ScholarLocate open access versionFindings
  • Salzinger, K., Portnoy, S., & Feldman, R. S. (1964). Verbal behavior of schizophrenic and normal subjects. Annals of the New York Academy of Sciences, 105, 845-860.
    Google ScholarLocate open access versionFindings
  • Salzinger, K., Portnoy, S., Pisoni, D. B., & Feldman, R. S. (1970). The immediacy hypothesis and response-produced stimuli in schizophrenic speech. Journal of Abnormal Psychology, 76, 258-264.
    Google ScholarLocate open access versionFindings
  • Sawaguchi, X, & Goldman-Rakic, P. S. (1991). Dl dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947-950.
    Google ScholarLocate open access versionFindings
  • Sawaguchi, T, & Matsumura, M. (1985). Laminar distributions of neurons sensitive to acetylcholine, noradrenaline and dopamine in the dorsolateral prefrontal cortex of the monkey. Neuroscience Research, 2, 255-273.
    Google ScholarLocate open access versionFindings
  • Scatton, B. (1977). Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration. European Journal of Pharmacology, 46, 363-369.
    Google ScholarLocate open access versionFindings
  • Scatton, B., Boireau, A., Garret, C, Glowinski, J., & Julou, L. (1977). Action of the palmitic ester of pipotiazine on dopamine metabolism in the nigro-striatal, meso-limbic and meso-cortical systems. Naunyn-Schmiedeberg's Archives of Pharmacology, 296,169-175.
    Google ScholarLocate open access versionFindings
  • Schneider, J. S., Levine, M. S., Hull, C. D., & Buchwald, N. A. (1984). Effects of amphetamine on intracellular responses of caudate neurons in the cat. Journal of Neuroscience, 4, 930-938.
    Google ScholarLocate open access versionFindings
  • Schwartz, S. (1982). Is there a schizophrenic language? Behavioral and Brain Sciences, 5, 579-626.
    Google ScholarLocate open access versionFindings
  • Sedvall, G, Fyro, B., Nyback, H., Wiesel, F. A., & Wode-Helgodt, B. (1974). Mass fragmentometric determination of HVA in lumbarcerebrospinal fluid of schizophrenic patients duringtreatment with antipsychotic drugs. Journal of Psychiatric Research, 11, 75-80.
    Google ScholarLocate open access versionFindings
  • Seeman, P., Ulpian, C., Bergeron, C., Riederer, P., Jellinger, K., Gabriel, E., Reynolds, G. P., & Tourtelotte, W W (1984). Bimodal distribution of dopamine receptor densities in brain of schizophrenics. Science, 225, 728-731.
    Google ScholarLocate open access versionFindings
  • Seidenberg, M. S., & McClelland, J. L. (1989). A distributed development model of word recognition and naming. Psychological Review, 96, 523-568.
    Google ScholarLocate open access versionFindings
  • Servan-Schreiber, D. (1990). From physiology to behavior: Computational models ofcatecholamine modulationof information processing (PhD thesis; Tech. Rep. CMU-CS-90-167). Pittsburgh, PA:Carnegie Mellon University, School of Computer Science.
    Google ScholarFindings
  • Servan-Schreiber, D., Cleeremans, A., & McClelland, J. L. (in press). Graded state machines: The representation of temporal contingencies in simple recurrent networks. Machine Learning.
    Google ScholarFindings
  • Servan-Schreiber, D., Printz, H. W, & Cohen, J. D. (1990). A network model ofcatecholamine effects: Gain, signal-to-noise ratio and behavior. Science, 249, 892-895.
    Google ScholarLocate open access versionFindings
  • Shakow, D. (1962). Segmental set: A theory of the formal psychological deficit in schizophrenia. Archives of General Psychiatry, 6,1-17.
    Google ScholarLocate open access versionFindings
  • Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London, 298,199-209.
    Google ScholarLocate open access versionFindings
  • Simon, H., Scatton, B., & Le Moal, M. (1980). Dopaminergic A10 neurones are involved in cognitive functions. Nature, 286,150-151.
    Google ScholarLocate open access versionFindings
  • Snyder, S. H. (1972). Catecholamines in the brain as mediators of amphetamine psychosis. Archives of General Psychiatry, 27,169-179.
    Google ScholarLocate open access versionFindings
  • Snyder, S. H. (1976). The dopamine hypothesis of schizophrenia: Focus on the dopamine receptor. AmericanJournal of Psychiatry, 133,197202.
    Google ScholarLocate open access versionFindings
  • Snyder, S. H., Banerjee, S. P.,Yamamura, H. I, & Greenberg, D.(1974). Drugs, neurotransmitters and schizophrenia. Science, 184, 12431253.
    Google ScholarLocate open access versionFindings
  • Spohn, H. E., Lacoursiere, R. B., Thomson, K., & Coyne, L. (1977). Phenothiazine effects on psychological and psychophysiological dysfunction in chronic schizophrenics. Archives of General Psychiatry, 34, 633-644.
    Google ScholarLocate open access versionFindings
  • Spring, B.(1985). Distractibility as a marker of vulnerability to schizophrenia. Psychopharmacology Bulletin, 21, 509-512.
    Google ScholarLocate open access versionFindings
  • Stevens, J. R. (1973). An anatomy of schizophrenia? Archives of General Psychiatry, 29,177-189.
    Google ScholarLocate open access versionFindings
  • Strauss, M. E. (1975). Strong meaning-response bias in schizophrenia. Journal of Abnormal Psychology, 84, 293-298.
    Google ScholarLocate open access versionFindings
  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662.
    Google ScholarLocate open access versionFindings
  • Stuss, D. T, & Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95, 3-28.
    Google ScholarLocate open access versionFindings
  • Swets, J. A., & Sewall, S. T. (1963). Invariance of signal detectability over stages of practice and levels of motivation. Journal of Experimental Psychology, 66,120-126.
    Google ScholarLocate open access versionFindings
  • Tassin, J. P., Simon, H., Glowinski, J., & Bockaert, J. (1982). Modulations of the sensitivity of DA receptors in the prefrontal cortex and the nucleus accumbens: Relationship with locomotor activity. In R. Collu, J. R. Ducharme, A. Barbeau, & G. Tobis (Eds.), Brain peptides and hormones(pp. 17-30). New \brk: Raven Press.
    Google ScholarLocate open access versionFindings
  • Tyrone, L., & Seeman, P. (1980). Elevation of brain neuroleptic/dopamine receptors in schizophrenia. American Journal of Psychiatry, 137,191-197.
    Google ScholarLocate open access versionFindings
  • van Kammen, D. P., Peters, J., van Kammen, W B, Nugent, A., Goetz, K. L., Yao, J., & Linnoila, M. (1989). CSF norepinephrine in schizophrenia is elevated prior to relapse after hatoperidol withdrawal. Biological Psychiatry, 26,176-188.
    Google ScholarLocate open access versionFindings
  • Wapner, S., & Krus, D. M. (1960). Effects of lysergic acid diethylamide, and differences between normals and schizophrenics on the Stroop color-word test. Journal of Neuropsychiatry, 2, 76-81.
    Google ScholarLocate open access versionFindings
  • Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660-669.
    Google ScholarLocate open access versionFindings
  • Weinberger, D. R., & Berman, K. F. (1988). Speculation on the meaning of metabolic hypofrontality in schizophrenia. Schizophrenia Bulletin, 14,157-168.
    Google ScholarLocate open access versionFindings
  • Weinberger, D. R., Berman, K. F, & Chase, T. N. (1988). Mesocortical dopaminergic function and human cognition. Annals of "the New York Academy of Science, 537, 330-338.
    Google ScholarLocate open access versionFindings
  • Weinberger, D. R., Berman, K. F, & Illowsky, B. P. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: A new cohort of evidence for a monoaminergic mechanism. Archives of General Psychiatry, 45, 606-615.
    Google ScholarLocate open access versionFindings
  • Weinberger, D. R., Berman, K. F., & Zee, R. F. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43,114-125.
    Google ScholarLocate open access versionFindings
  • Weinberger, D. R., Bigelow, L. B., Kleinman, J. E, Klein, S. T, Rosenblatt, J. E., & Wyatt, R. J. (1980). Cerebral ventricular enlargement in chronic schizophrenia. Archives of General Psychiatry, 37,11-13.
    Google ScholarLocate open access versionFindings
  • Widlocher, D., & Haidy-Bayle, M. C. (1989). Cognition and control of action in psychopathology. European Bulletin of Cognitive Psychology, 9, 583-615.
    Google ScholarLocate open access versionFindings
  • Wielgus, M. S., & Harvey, P. D. (1988). Dichotic listening and recall in schizophrenia and mania. Schizophrenia Bulletin, 14(4), 689-700.
    Google ScholarLocate open access versionFindings
  • Wysocki, J. J., & Sweet, J. J. (1985). Identification of brain-damaged, schizophrenic, and normal medical patients using a brief neuropsychological screening battery. International Journal of Clinical Neuropsychology, 7(1), 40-49.
    Google ScholarLocate open access versionFindings
  • Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331, 679-684.
    Google ScholarLocate open access versionFindings
0
您的评分 :

暂无评分

标签
评论
avatar
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn