Efficient HgTe colloidal quantum dot-sensitized near-infrared photovoltaic cells.

NANOSCALE(2012)

引用 49|浏览8
暂无评分
摘要
We have demonstrated the successful fabrication of multiple-layer colloidal quantum dot (CQD)-sensitized near-infrared (NIR) photovoltaic (PV) cells using the solution processable HgTe CQDs and poly-3-(hexylthiophene) (P3HT) as hole-conducting polymer. The cells showed a 3.6 fold enhancement in power conversion efficiency under NIR light illumination by the post-ethanedithiol chemical treatment. The performance enhancement was mainly ascribed to the improved interfacial contact between HgTe CQDs by elimination of oleic acid as capping ligand on the surface of HgTe CQDs. In addition, the HgTe CQD-sensitized PV cells could effectively detect weak NIR light and process over 1 kHz level signals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要