Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide.

Journal of Hazardous Materials(2012)

引用 124|浏览3
暂无评分
摘要
An arsenic adsorbent comprising alumina nanoparticles dispersed in polymer matrix was developed and its removal potential studied. Alumina nanoparticles were prepared by reverse microemulsion technique and these were immobilized on chitosan grafted polyacrylamide matrix by in situ dispersion. The loading capacity of this new synthesized adsorbent was found to be high (6.56mg/g). Batch adsorption studies were performed as a function of contact time, initial arsenic concentration, pH and presence of competing anions. The removal was found to be pH dependent, and maximum removal was obtained at pH 7.2 while the equilibrium time was 6h. The equilibrium adsorption data fitted very well with Freundlich isotherm. However, the D-R isotherm studies indicated that chemisorptions might play an important role. This was also confirmed by the FTIR study of the arsenic loaded adsorbent. A mechanism of arsenic sorption by the new polymeric adsorbent has been proposed. The regeneration study of the adsorbent resulted in retention of 94% capacity in the fifth cycle. An optimum pH of 7.2, operation at normal temperature, high adsorption capacity and good recycle potential of this new adsorbent would make it an ideal material for removal of arsenic from drinking water.
更多
查看译文
关键词
Nano-alumina,Arsenic,Adsorption,Isotherm,Desorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要