AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

AI 精读

AI抽取本论文的概要总结


微博一下
We studied six normal subjects performing a working memory paradigm associated with different levels of monetary reward during an fMRI session

The neural system that bridges reward and cognition in humans: an fMRI study.

NEUROLOGY, no. SUP7 (2002): A359-A359

引用416|浏览137
WOS
下载 PDF 全文
引用
微博一下

摘要

We test the hypothesis that motivational and cognitive processes are linked by a specific neural system to reach maximal efficiency. We studied six normal subjects performing a working memory paradigm (n-back tasks) associated with different levels of monetary reward during an fMRI session. The study showed specific brain activation in re...更多

代码

数据

0
简介
  • Motivation (i.e., ‘‘that pushes one to act’’) and executive processes are the two essential dimensions that determine one’s goal-directed actions.
  • Results obtained by recording some DLPFC neurons during WM tasks in association with different rewards indicate that context influences the level of activation of the DLPFC [9]
  • This influence may be driven by neurons in the VPFC, given the putative role of the latter structure and recent data showing its connectivity with the DLPFC [10, 11]
重点内容
  • Motivation (i.e., ‘‘that pushes one to act’’) and executive processes are the two essential dimensions that determine one’s goal-directed actions
  • Previous studies indicated that the dorsolateral PFC activation is related to the working memory executive components [12,13,14, 21, 22], whereas the anterior cingulate cortex activation may be associated partly with error monitoring [23] andor attentional processes [24, 25]
  • In addition to these well recognized structures for working memory, this study provides new insights that may help in the understanding of working memory processing and its relation to the prefrontal cortex
  • The more demanding working memory task—the 3-back task—activated specific areas, in particular the lateral frontopolar region [i.e., the lateral portions of Brodmann area 10, which lie rostral to the dorsolateral PFC and the interim areas on the lateral borderline of area 10] [26]
  • The 3-back task is prototypic of this situation because subjects should at each moment: (i) decide which piece of information should be selected for the response, and keep in mind those to be used later and those to be deleted from working memory
  • In accordance with previous observations in reasoning or planning tasks, suggest that the lateral frontopolar regions are recruited in tasks that maximize the demand in executive processing
方法
  • Subjects performed a letter variant of the n-back procedure [12,13,14], according to which subjects were to indicate whether a letter presented on the screen was similar or different from a letter previously presented
  • This procedure requires the participant to maintain and permanently update the relevant pieces of information in WM.
  • Subjects performed a control task called the 0-back task, which required subjects to
结果
  • The overall positive effect of the n-back (1- ϩ 2- ϩ 3-back vs 0-back comparison) revealed a network including the intraparietal sulci (BA 7͞39͞40), the premotor (BA 6), the lateral and the ventral prefrontal cortices (BA 9͞10͞44͞45͞46), and the cerebellum.
  • The comparison of the 3- to the 2-back showed a large bilateral increase of activity extended, in its lateral aspect, from superior parietal lobule (BA 7) to the superior frontal gyrus (BA 9͞10) and, in its medial aspect, to the MPFC (BA 6͞8͞10) and the anterior cingulate cortex (ACC; BA 32).
  • Time-course curves in the DLPFC demonstrated the progressive increase of the hemodynamic signal associated with the increase in load (1-, 2-, and 3-back; Fig. 2a)
结论
  • Brain Areas Activated by Working Memory and by Associated Reward. Congruent with the well defined neural architecture of WM [19], the study demonstrates activation in a cerebral network including: (i) a storage buffer mediated by the parietal cortex (BA 7͞40) and at a lesser extent a subvocal rehearsal system mediated

    5672 ͉ www.pnas.orgcgidoi10.1073͞pnas.082111099

    by the left inferior PFC (BA 44͞45); and (ii) an executive component mediated by the DLPFC (BA 9͞46).
  • Previous studies indicated that the DLPFC activation is related to the WM executive components [12,13,14, 21, 22], whereas the ACC activation may be associated partly with error monitoring [23] andor attentional processes [24, 25].
  • In accordance with previous observations in reasoning or planning tasks, suggest that the lateral frontopolar regions are recruited in tasks that maximize the demand in executive processing
表格
  • Table1: Activation and deactivation associated with reward Specific
Download tables as Excel
基金
  • This work was supported by a grant from the Ministere de l’Education Nationale, de la Recherche et de la Technologie, and from Fondation pour la Recherche Medicale
引用论文
  • 3. Thut, G., Schultz, W., Roelcke, U., Nienhusmeier, M., Missimer, J., Maguire, R. P. & Leenders, K. L. (1997) NeuroReport 8, 1225–1228.
    Google ScholarFindings
  • 4. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., Brooks, D. J., Bench, C. J. & Grasby, P. M. (1998) Nature (London) 393, 266–268.
    Google ScholarLocate open access versionFindings
  • 5. Elliot, R., Friston, K. J. & Dolan, R. J. (2000) J. Neurosci. 20, 6159–6165.
    Google ScholarLocate open access versionFindings
  • 6. Knutson, B., Westdorp, A., Kaiser, E. & Hommer, D. (2000) NeuroImage 12, 20 –27.
    Google ScholarFindings
  • 7. Breiter, H. C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. (2001) Neuron 30, 619–639.
    Google ScholarFindings
  • 8. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. (2001) Nat. Neurosci. 4, 95–102.
    Google ScholarLocate open access versionFindings
  • 9. Watanabe, M. (1996) Nature (London) 382, 629–632.
    Google ScholarLocate open access versionFindings
  • 10. Hikosaka, K. & Watanabe, M. (2000) Cereb. Cortex 10, 263–271.
    Google ScholarLocate open access versionFindings
  • 11. Groenewegen, H. J. & Uylings, H. B. (2000) Prog. Brain Res. 126, 3–28.
    Google ScholarLocate open access versionFindings
  • 12. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E. & Noll, D. C. (1997) NeuroImage 5, 49–62.
    Google ScholarFindings
  • 13. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J. & Smith, E. E. (1997) Nature (London) 386, 604–608.
    Google ScholarLocate open access versionFindings
  • 14. Smith, E. E. & Jonides, J. (1997) Cognit. Psychol. 33, 5–42.
    Google ScholarLocate open access versionFindings
  • 15. Pallier, C., Dupoux, E. & Jeanin, X. (1997) Behav. Res. Methods Instrum. Comput. 29, 322–327.
    Google ScholarLocate open access versionFindings
  • 16. Friston, K. J., Holmes, A. P., Poline, J. B., Grasby, P. J., Williams, S. C., Frackowiak, R. S. & Turner, R. (1995) NeuroImage 2, 45–53.
    Google ScholarFindings
  • 17. Talairach, J. & Tournoux, P. (1988) Coplanar Stererotactic Atlas of the Human Brain (Thieme, New York).
    Google ScholarFindings
  • 18. Friston, K. J., Ashburner, J., Poline, J. B., Frith, C. D., Heather, J. D. & Frackowiak, R. S. J. (1995) Hum. Brain Mapp. 2, 165–189.
    Google ScholarLocate open access versionFindings
  • 19. Smith, E. E. & Jonides, J. (1999) Science 283, 1657–1661.
    Google ScholarFindings
  • 20. Paradiso, S., Johnson, D. L., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L. & Hichwa, R. D. (1999) Am. J. Psychiatry 156, 1618–1629.
    Google ScholarLocate open access versionFindings
  • 21. Smith, E. E., Jonides, J., Marshuetz, C. & Koeppe, R. A. (1998) Proc. Natl. Acad. Sci. USA 95, 876–882.
    Google ScholarLocate open access versionFindings
  • 22. Postle, B. R., Berger, J. S. & D’Esposito, M. (1999) Proc. Natl. Acad. Sci. USA 96, 12959–12964.
    Google ScholarLocate open access versionFindings
  • 23. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D. & Cohen, J. D. (1998) Science 280, 747–749.
    Google ScholarLocate open access versionFindings
  • 24. Pardo, J. V., Pardo, P. J., Janer, K. W. & Raichle, M. E. (1990) Proc. Natl. Acad. Sci. USA 87, 256–259.
    Google ScholarLocate open access versionFindings
  • 25. McDonald, J. J. & Ward, L. M. (2000) Psychol. Sci. 11, 167–171.
    Google ScholarLocate open access versionFindings
  • 26. Petrides, M. & Pandya, D. N. (1994) in Handbook of Neurophysiology, eds. Boller, F. & Grafman, J. (Elsevier Science, Amsterdam), pp. 59–82.
    Google ScholarLocate open access versionFindings
  • 27. Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. (1999) Nature (London) 399, 148–151.
    Google ScholarLocate open access versionFindings
  • 28. Christoff, K. & Gabrieli, J. D. E. (2000) Psychobiology 28, 168–186.
    Google ScholarLocate open access versionFindings
  • 29. Leon, M. I. & Shadlen, M. N. (1999) Neuron 24, 415–425.
    Google ScholarFindings
  • 30. Damasio, A. R. (1994) Descarte’s Error (Avon, New York).
    Google ScholarFindings
  • 31. Schultz, W. (2000) Nat. Rev. Neurosci. 1, 199–207.
    Google ScholarLocate open access versionFindings
  • 32. Lane, R. D., Reiman, E. M., Axelrod, B., Yun, L. S., Holmes, A. & Schwartz, G. E. (1998) J. Cognit. Neurosci. 10, 525–535.
    Google ScholarLocate open access versionFindings
  • 33. Posner, M. I. & Rothbart, M. K. (1998) Philos. Trans. R. Soc. London B 353, 1915–1927.
    Google ScholarLocate open access versionFindings
  • 34. Kircher, T. T., Senior, C., Phillips, M. L., Benson, P. J., Bullmore, E. T., Brammer, M., Simmons, A., Williams, S. C., Bartels, M. & David, A. S. (2000) Brain Res. Cognit. Brain Res. 10, 133–144.
    Google ScholarLocate open access versionFindings
  • 35. Luu, P., Collins, P. & Tucker, D. M. (2000) J. Exp. Psychol. Gen. 129, 43–60.
    Google ScholarLocate open access versionFindings
  • 36. Critchley, H. D., Elliot, R., Mathias, C. J. & Dolan, R. J. (2000) J. Neurosci. 20, 3033–3040.
    Google ScholarLocate open access versionFindings
  • 37. Rolls, E. T. (1989) J. Exp. Biol. 146, 141–164.
    Google ScholarLocate open access versionFindings
  • 38. Rolls, E. T., Hornak, J., Wade, D. & McGrath, J. (1994) J. Neurol. Neurosurg. Psychiatry 57, 1518–1524.
    Google ScholarLocate open access versionFindings
  • 39. Bechara, A., Damasio, H. & Damasio, A. R. (2000) Cereb. Cortex 10, 295–307.
    Google ScholarLocate open access versionFindings
  • 40. Hollerman, J. R., Tremblay, L. & Schultz, W. (2000) Prog. Brain Res. 126, 193–215.
    Google ScholarLocate open access versionFindings
  • 41. Schultz, W., Tremblay, L. & Hollerman, J. R. (2000) Cereb. Cortex 10, 272–284.
    Google ScholarLocate open access versionFindings
  • 42. Tremblay, L. & Schultz, W. (2000) J. Neurophysiol. 83, 1864–1876.
    Google ScholarLocate open access versionFindings
  • 43. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A. & Shulman, G. L. (2001) Proc. Natl. Acad. Sci. USA 98, 676–682.
    Google ScholarLocate open access versionFindings
  • 44. Shulman, G. L., Corbetta, M., Buckner, R. L., Raichle, M. E., Fiez, J. A., Miezin, F. M. & Petersen, S. E. (1997) Cereb. Cortex 7, 193–206.
    Google ScholarLocate open access versionFindings
  • 45. Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., Silva, J. A., Tekell, J. L., Martin, C. C., Lancaster, J. L. & Fox, P. T. (1999) Am. J. Psychiatry 156, 675–682.
    Google ScholarLocate open access versionFindings
  • 46. Simpson, J. R., Jr., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. (2001) Proc. Natl. Acad. Sci. USA 98, 683–687.
    Google ScholarLocate open access versionFindings
  • 47. Simpson, J. R., Jr., Drevets, W. C., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. (2001) Proc. Natl. Acad. Sci. USA 98, 688–693.
    Google ScholarLocate open access versionFindings
  • 48. Berns, G. S., McClure, S. M., Pagnoni, G. & Montague, P. R. (2001) J. Neurosci. 21, 2793–2798.
    Google ScholarLocate open access versionFindings
  • 49. Simpson, J. R., Ongur, D., Akbudak, E., Conturo, T. E., Ollinger, J. M., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. (2000) J. Cognit. Neurosci. 12, 157–170.
    Google ScholarLocate open access versionFindings
  • 50. Drevets, W. C. (1999) Ann. N.Y. Acad. Sci. 877, 614–637. 5674 ͉ www.pnas.orgcgidoi10.1073͞pnas.082111099
    Locate open access versionFindings
0
您的评分 :

暂无评分

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn