Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance.

The Plant cell(2009)

引用 132|浏览0
暂无评分
摘要
Regulation of reactive oxygen species and cytosolic free calcium ([Ca(2+)](cyt)) is central to plant function. Annexins are small proteins capable of Ca(2+)-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca(2+)](cyt) when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca(2+)-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca(2+) influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca(2+)-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd(3+) and had a Ca(2+)-to-K(+) permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca(2+) influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca(2+)-permeable transport pathways, regulate [Ca(2+)](cyt), and may function as peroxidases in vitro.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要