谷歌浏览器插件
订阅小程序
在清言上使用

Different Expression and Function of the Endocannabinoid System in Human Epicardial Adipose Tissue in Relation to Heart Disease

Canadian journal of cardiology(2013)

引用 26|浏览13
暂无评分
摘要
BACKGROUND:The endocannabinoid system reportedly plays a role in the pathogenesis of cardiovascular diseases. This system is expressed also in adipose tissue, which could thus be involved in cardiac disorders through modulation of metabolically triggered inflammation. The current study aims to determine the relevance of the endocannabinoid system in epicardial adipose tissue in heart disease.METHODS:Expression of the endocannabinoid receptors CB1 and CB2, and of the endocannabinoid-degrading enzyme, fatty acid amidohydrolase, and activation of protein kinase A (PKA), phospholipase C (PLC), protein kinase C (PKC), endothelial nitric oxide synthase (eNOS) and inducible (i)NOS, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) (a member of the reperfusion-injury salvage kinase pathway), were analyzed by Western blot in patients after coronary artery bypass surgery (ischemics; N = 18) or valve surgery (nonischemics; N = 15) and in preadipocytes isolated from epicardial adipose tissue.RESULTS:In ischemics, the CB1-to-CB2 expression ratio shifted toward CB1 and was accompanied by higher PKA activation. In contrast, in nonischemics, CB2, fatty acid amidohydrolase, PLC and PKC, and ERK1/2 were upregulated. Moreover, NO production and iNOS-to-eNOS ratios were higher in preadipocytes from ischemics.CONCLUSIONS:These results show a different modulation and functioning of the endocannabinoid system in ischemics compared with nonischemics. Hence, while CB2, PLC and PKC, ERK1/2, and eNOS are more strongly expressed in patients without ischemic heart disease, high CB1 and PKA expression is associated with low survival intracellular pathway activation and high iNOS activation in ischemic heart disease patients. The changes in the endocannabinoid system in ischemics may contribute to cardiac dysfunction and therefore represents a potential therapeutic target.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要