Community dynamics of microbial eukaryotes in intertidal mudflats in the hypertidal Bay of Fundy

ISME communications(2023)

引用 3|浏览8
暂无评分
摘要
Protists (microbial eukaryotes) are a critically important but understudied group of microorganisms. They are ubiquitous, represent most of the genetic and functional diversity among eukaryotes, and play essential roles in nutrient and energy cycling. Yet, protists remain a black box in marine sedimentary ecosystems like the intertidal mudflats in the Bay of Fundy. The harsh conditions of the intertidal zone and high energy nature of tides in the Bay of Fundy provide an ideal system for gaining insights into the major food web players, diversity patterns and potential structuring influences of protist communities. Our 18S rDNA metabarcoding study quantified seasonal variations and vertical stratification of protist communities in Bay of Fundy mudflat sediments. Three ‘SAR’ lineages were consistently dominant (in terms of abundance, richness, and prevalence), drove overall community dynamics and formed the core microbiome in sediments. They are Cercozoa (specifically thecate, benthic gliding forms), Bacillariophyta (mainly cosmopolitan, typically planktonic diatoms), and Dinophyceae (dominated by a toxigenic, bloom-forming species). Consumers were the dominant trophic functional group and were comprised mostly of eukaryvorous and bacterivorous Cercozoa, and omnivorous Ciliophora, while phototrophs were dominated by Bacillariophyta. The codominance of Apicomplexa (invertebrate parasites) and Syndiniales (protist parasites) in parasite assemblages, coupled with broader diversity patterns, highlighted the combined marine and terrestrial influences on microbial communities inhabiting intertidal sediments. Our findings, the most comprehensive in a hypertidal benthic system, suggest that synergistic interactions of both local and regional processes (notably benthic-pelagic coupling) may drive heterogenous microbial distribution in high-energy coastal systems.
更多
查看译文
关键词
microbial eukaryotes,intertidal mudflats,hypertidal bay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要