Using plethysmography to determine erythropoietin's impact on neural control of ventilation.

Methods in molecular biology (Clifton, N.J.)(2013)

引用 2|浏览3
暂无评分
摘要
The evaluation of respiratory parameters often requires the use of anesthetics (that depress the neural -network controlling respiration), and/or ways to restrain the animal's mobility (that produces a stress-dependent increase of respiration). Consequently, the establishment of plethysmography represented an invaluable technique in respiratory physiology. Plethysmography, indeed, allows the assessment of ventilatory parameters on living, unanesthetized, and unrestrained animals. The conception of the barometric plethysmography relies on the fact that an animal placed inside a hermetically closed chamber generates through its breathing a fluctuation of pressure in the chamber than can be recorded. Thus, the respiratory frequency and the tidal volume can be directly measured, while the animal's ventilation is calculated indirectly by the multiplication of these two parameters. In our hands, plethysmography was a key tool to investigate the impact of erythropoietin (Epo) on the neural control of hypoxic ventilation in mice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要