谷歌浏览器插件
订阅小程序
在清言上使用

Crystal Structure of 3-Hydroxybenzoate 6-Hydroxylase Uncovers Lipid-assisted Flavoprotein Strategy for Regioselective Aromatic Hydroxylation

Journal of biological chemistry/˜The œJournal of biological chemistry(2013)

引用 41|浏览22
暂无评分
摘要
3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is a dimeric flavoprotein that catalyzes the NADH-and oxygen-dependent para-hydroxylation of 3-hydroxybenzoate to 2,5-dihydroxybenzoate. In this study, we report the crystal structure of 3HB6H as expressed in Escherichia coli. The overall fold of 3HB6H is similar to that of p-hydroxybenzoate hydroxylase and other flavoprotein aromatic hydroxylases. Unexpectedly, a lipid ligand is bound to each 3HB6H monomer. Mass spectral analysis identified the ligand as a mixture of phosphatidylglycerol and phosphatidylethanolamine. The fatty acid chains occupy hydrophobic channels that deeply penetrate into the interior of the substrate-binding domain of each subunit, whereas the hydrophilic part is exposed on the protein surface, connecting the dimerization domains via a few interactions. Most remarkably, the terminal part of a phospholipid acyl chain is directly involved in the substrate-binding site. Co-crystallized chloride ion and the crystal structure of the H213S variant with bound 3-hydroxybenzoate provide hints about oxygen activation and substrate hydroxylation. Essential roles are played by His-213 in catalysis and Tyr-105 in substrate binding. This phospholipid-assisted strategy to control regioselective aromatic hydroxylation is of relevance for optimization of flavin-dependent biocatalysts.
更多
查看译文
关键词
Crystal Structure,Flavoproteins,Hydroxylase,Oxidation-Reduction,Phospholipid,Rhodococcus,Gentisate,Monooxygenase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要