Potential use of fucose-appended dendrimer/α-cyclodextrin conjugates as NF-κB decoy carriers for the treatment of lipopolysaccharide-induced fulminant hepatitis in mice.

Journal of Controlled Release(2014)

引用 15|浏览1
暂无评分
摘要
The purpose of the present study is to treat lipopolysaccharide (LPS)-induced fulminant hepatitis by NF-κB decoy complex with fucose-appended dendrimer (generation 2; G2) conjugate with α-cyclodextrin (Fuc-S-α-CDE (G2)). Fuc-S-α-CDE (G2, average degree of substitution of fucose (DSF2))/NF-κB decoy complex significantly suppressed nitric oxide and tumor necrosis factor-α (TNF-α) production from LPS-stimulated NR8383 cells, a rat alveolar macrophage cell line, by adequate physicochemical properties and fucose receptor-mediated cellular uptake. Intravenous injection of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex extended the survival of LPS-induced fulminant hepatitis model mice. In addition, Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex administered intravenously highly accumulated in the liver, compared to naked NF-κB decoy alone. Furthermore, the liver accumulation of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex was inhibited by the pretreatment with GdCl3, a specific inhibitor of Kupffer cell uptake. Also, the serum aspartate aminotransferase, alanine aminotransferase and TNF-α levels in LPS-induced fulminant hepatitis model mice were significantly attenuated by the treatment with Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex, compared with naked NF-κB decoy alone. Taken together, these results suggest that Fuc-S-α-CDE (G2, DSF2) has the potential for a novel Kupffer cell-selective NF-κB decoy carrier for the treatment of LPS-induced fulminant hepatitis in mice.
更多
查看译文
关键词
Fucose,Dendrimer,Cyclodextrin,NF-κB decoy carrier,Fulminant hepatitis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要