A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast.

Cell Reports(2014)

引用 60|浏览8
暂无评分
摘要
Although pseudouridine nucleobases are abundant in tRNAs, rRNAs, and small nuclear RNAs (snRNAs), they are not known to have physiologic roles in cell differentiation. We have identified a pseudouridine residue (Ψ28) on spliceosomal U6 snRNA that is induced during filamentous growth of Saccharomyces cerevisiae. Pus1p catalyzes this modification and is upregulated during filamentation. Several U6 snRNA mutants are strongly pseudouridylated at Ψ28. Remarkably, these U6 mutants activate pseudohyphal growth, dependent upon Pus1p, arguing that U6-Ψ28 per se can initiate at least part of the filamentous growth program. We confirmed this by using a designer small nucleolar RNA (snoRNA) targeting U6-U28 pseudouridylation. Conversely, mutants that block U6-U28 pseudouridylation inhibit pseudohyphal growth. U6-U28 pseudouridylation changes the splicing efficiency of suboptimal introns; thus, Pus1p-dependent pseudouridylation of U6 snRNA contributes to the filamentation growth program.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要