Preclinical Safety Evaluation of ASCs Engineered by FLPo/Frt-Based Hybrid Baculovirus: In Vitro and Large Animal Studies.

TISSUE ENGINEERING PART A(2015)

引用 8|浏览8
暂无评分
摘要
We recently developed hybrid baculovirus (BV) vectors that exploited FLPo/Frt-mediated DNA minicircle formation. Engineering of adipose-derived stem cells (ASCs) with the FLPo/Frt-based BV vectors enabled prolonged transgene expression and, after cell implantation into rabbits, ameliorated cartilage regeneration and bone repair. To translate the hybrid BV one step further toward clinical applications, here we assessed the biosafety profiles of the hybrid BV-engineered human ASCs (hASCs) in vitro and evaluated the immune responses elicited by the engineered porcine ASCs (pASCs) in large animals. We confirmed that the hybrid BV did not compromise the hASCs viability, immunosuppressive capacity, and surface characteristics. Neither did the hybrid BV cause chromosomal abnormality/transgene integration in vitro nor did it induce tumorigenicity in vivo. In the large animal study, pASCs were engineered with the hybrid BV expressing bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF) and implanted into femoral bone defects in mini pigs. The hybrid BV-engineered pASCs enabled prolonged BMP2/VEGF expression and triggered the healing of massive segmental bone defects, while only eliciting transient antibody, cytokine, and local cellular immune responses stemming from the implantation procedure itself. These data altogether demonstrated the safety of the hybrid BV vectors for ASCs engineering and bone healing in large animals, hence implicating the potential in clinical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要