谷歌浏览器插件
订阅小程序
在清言上使用

EGF Suppresses the Initiation and Drives the Reversion of TGF‐β1‐induced Transition in Hepatic Oval Cells Showing the Plasticity of Progenitor Cells

Journal of cellular physiology(2015)

引用 15|浏览61
暂无评分
摘要
Transforming growth factor-β1 (TGF-β1) induces hepatic progenitors to tumor initiating cells through epithelial-mesenchymal transition (EMT), thus raising an important drawback for stem cell-based therapy. How to block and reverse TGF-β1-induced transition is crucial for progenitors' clinical application and carcinogenic prevention. Rat adult hepatic progenitors, hepatic oval cells, experienced E-cadherin to N-cadherin switch and changed to α-smooth muscle actin (α-SMA) positive cells after TGF-β1 incubation, indicating EMT. When TGF-β1 plus EGF were co-administrated to these cells, EGF dose-dependently suppressed the cadherin switch and α-SMA expression. Interestingly, if EGF was applied to TGF-β1-pretreated cells, the cells that have experienced EMT could return to their epithelial phenotype. Abruption of EGF receptor revealed that EGF exerted its blockage and reversal effects through phosphorylation of ERK1/2 and Akt. These findings suggest an important attribute of EGF on opposing and reversing TGF-β1 effects, indicating the plasticity of hepatic progenitors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要