Connecting radiation-induced bystander effects and senescence to improve radiation response prediction.

RADIATION RESEARCH(2015)

引用 13|浏览2
暂无评分
摘要
For the last two decades radiation-induced bystander effects (RIBEs) have attracted significant attention due to their possible implications for radiotherapy. However, despite extensive research, the molecular pathways associated with RIBEs are still not completely known. In the current study we investigated the role of senescence in the bystander response. Irradiated (2, 4, 6 and 8 Gy) human colorectal carcinoma cells (HCT116) with p53(+/+) (wild-type) or p53(-/-)(knockout) gene were co-incubated with nonirradiated cells of the same type. Clonogenic and senescence assays were used for both irradiated and co-incubated bystander cell populations. We also performed additional measurements on the number of remaining cells after the whole co-incubation period. For radiation doses larger than 2 Gy we observed much larger fractions of senescent cells in p53-positive populations compared to their p53-negative counterparts (15.81% vs. 3.63% in the irradiated population; 2.89% vs. 1.05% in the bystander population; 8 Gy; P<0.05). Statistically significant differences between cell lines in the clonogenic cell surviving fraction were observed for doses higher than 4 Gy (1.61% for p53+/+ vs. 0.19% for p53(-/-) in irradiated population; 3.57% for +/+ vs. 50.39% for -/- in bystander population; 8 Gy; P, 0.05). Our main finding was that the number of senescent cells in the irradiated population correlated strongly with the clonogenic cell surviving fraction (R = -0.98, P<0.001) and the number of senescent cells (R = 0.97, P, 0.001) in the bystander population. We also extended the standard linear-quadratic radiation response model by incorporating the influence of the signals released by the senescent cells, which accurately described the radiation response in the bystander population. Our findings suggest that radiation-induced senescence might be a key player in RIBE, i.e., the strength of RIBE depends on the amount of radiation-induced senescence. (C) 2015 by Radiation Research Society
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要