One-carbon metabolism and epigenetics: understanding the specificity.

Annals of the New York Academy of Sciences(2015)

引用 249|浏览14
暂无评分
摘要
One-carbon metabolism is a metabolic network that integrates nutrient status from the environment to yield multiple biological functions. The folate and methionine cycles generate S-adenosylmethionine (SAM), which is the universal methyl donor for methylation reactions, including histone and DNA methylation. Histone methylation is a crucial part of the epigenetic code and plays diverse roles in the establishment of chromatin states that mediate the regulation of gene expression. The activities of histone methyltransferases (HMTs) are dependent on intracellular levels of SAM, which fluctuate based on cellular nutrient availability, providing a link between cell metabolism and histone methylation. Here we discuss the biochemical properties of HMTs, their role in gene regulation, and the connection to cellular metabolism. Our emphasis is on understanding the specificity of this intriguing link.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要