An Aromatic Hydroxyamide Attenuates Multiresistant Staphylococcus aureus Toxin Expression.

CHEMISTRY-A EUROPEAN JOURNAL(2016)

引用 7|浏览17
暂无评分
摘要
Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections with only few effective antibiotic therapies currently available. To approach this challenge, chemical entities with a novel and resistance-free mode of action are desperately needed. Here, we introduce a new hydroxyamide compound that effectively reduces the expression of devastating toxins in various S. aureus and MRSA strains. The molecular mechanism was investigated by transcriptome analysis as well as by affinity-based protein profiling. Down-regulation of several pathogenesis associated genes suggested the inhibition of a central virulence-related pathway. Mass spectrometry-based chemical proteomics revealed putative molecular targets. Systemic treatment with the hydroxyamide showed significant reduction of abscess sizes in a MRSA mouse skin infection model. The absence of resistance development in vitro further underlines the finding that targeting virulence could lead to prolonged therapeutic options in comparison to antibiotics that directly address bacterial survival.
更多
查看译文
关键词
click chemistry,drug discovery,proteomics,medicinal chemistry,toxicology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要