Elevated atmospheric [CO2] stimulates sugar accumulation and cellulose degradation rates of rice straw

GLOBAL CHANGE BIOLOGY BIOENERGY(2016)

引用 31|浏览7
暂无评分
摘要
Rice straw can serve as potential material for bioenergy production. However, the quantitative effects of increasing atmospheric carbon dioxide concentration [CO2] on rice straw quality and the resulting consequences for bioenergy utilization are largely unknown. In this study, two rice varieties, WYJ and LY, that have been shown previously to have a weak and strong stimulatory response to rising [CO2], respectively, were grown with and without additional CO2 at China free-air carbon dioxide enrichment (FACE) platform. Qualitative and quantitative measurements in response to [CO2] included straw biomass (including leaf, sheath, and stem), the concentration of nonstructural and structural carbohydrates, the syringyl-to-guaiacyl (S/G) ratio of lignin, glucose and xylose release from structural carbohydrate, total sugar release by enzymatic saccharification, and sugar yield and the ratio of cellulose and hemicellulose degradation. Elevated [CO2] significantly increased straw biomass and nonstructural carbohydrate contents while enhancing the degraded ratio of structural carbohydrates as indicated by the decreased lignin content and increased S/G ratio. Overall, total sugar yield (g m(-2)) in rice straw significantly increased by 27.1 and 57% for WYJ and LY at elevated [CO2], respectively. These findings, while preliminary, suggest that rice straw quality and potential biofuel utilization may improve as a function of rising [CO2].
更多
查看译文
关键词
biofuel,elevated [CO2],rice,saccharification,straw,sugar release
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要