Nonlinear streak computation using boundary region equations

FLUID DYNAMICS RESEARCH(2012)

引用 13|浏览5
暂无评分
摘要
The boundary region equations (BREs) are applied for the simulation of the nonlinear evolution of a spanwise periodic array of streaks in a flat plate boundary layer. The well-known BRE formulation is obtained from the complete Navier-Stokes equations in the high Reynolds number limit, and provides the correct asymptotic description of three-dimensional boundary layer streaks. In this paper, a fast and robust streamwise marching scheme is introduced to perform their numerical integration. Typical streak computations present in the literature correspond to linear streaks or to small-amplitude nonlinear streaks computed using direct numerical simulation (DNS) or the nonlinear parabolized stability equations (PSEs). We use the BREs to numerically compute high-amplitude streaks, a method which requires much lower computational effort than DNS and does not have the consistency and convergence problems of the PSE. It is found that the flow configuration changes substantially as the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, which end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results.
更多
查看译文
关键词
numerical integration,three dimensional,boundary layer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要