An investigation into sintering of PA6 nanocomposite powders for rotational molding

Journal of Thermal Analysis and Calorimetry(2011)

引用 20|浏览14
暂无评分
摘要
The objective of this work is to study the sintering behavior of polyamide 6 (PA6) powders and PA6 nanocomposites by means of thermomechanical (TMA) and dimensionless analysis in view of its technological application in rotational molding. TMA analysis was used to monitor the bulk density evolution of PA6 powders and PA6 nanocomposites when heated above the melting temperature. Experimental TMA results indicate that the sintering of PA6 and PA6 nanocomposites occurs in two different steps, namely powder coalescence and void removal. Furthermore, TMA analysis showed that relevant degradation phenomena occur during the sintering of PA6 and PA6 nanocomposites, leading to gas formation in the molten polymer. The suitability of these materials in rotational molding was then assessed by defining a processing window, as the temperature difference between the endset sintering and the onset degradation. The heating rate dependence of the processing window was explained by means of dimensionless analysis, showing that powder coalescence is influenced by the viscosity evolution of the matrix, whereas void removal is influenced by the gas diffusivity inside the molten matrix. Therefore, the diffusion activation energy correlates the endset sintering temperature to the heating rate. On the other hand, the onset degradation temperature depends on the heating rate, due to the characteristic activation energy of the degradation process. Accordingly, the width of the processing window mainly depends on the values of the activation energies for diffusivity and degradation. The width of the processing window for neat PA6 was found to be too narrow to candidate this polymer for rotational molding. The addition of nanofiller causes a narrowing of the processing window, whereas the PA6 matrix modified with a thermal stabilizer showed a sufficiently broad processing window, compatible for use in rotational molding.
更多
查看译文
关键词
nanocomposites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要