THE FAINT STELLAR HALOS OF MASSIVE RED GALAXIES FROM STACKS OF MORE THAN 42,000 SDSS LRG IMAGES

ASTROPHYSICAL JOURNAL(2011)

引用 68|浏览42
摘要
We study the properties of massive galaxies at an average redshift of z similar to 0.34 through stacking more than 42,000 images of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS). This is the largest data set ever used for such an analysis and it allows us to explore the outskirts of massive red galaxies at unprecedented physical scales. Our image stacks extend farther than 400 kpc, where the r-band profile surface brightness reaches 30 mag arcsec(-2). This analysis confirms that the stellar bodies of LRGs follow a simple Sersic profile out to 100 kpc. At larger radii, the profiles deviate from the best-fit Sersic models and exhibit extra light in the r-, i-, and z-band stacks. This excess light can probably be attributed to unresolved intragroup or intracluster light or a change in the light profile itself. We further show that standard analyses of SDSS-depth images typically miss 20% of the total stellar light and underestimate the size of LRGs by 10% compared to our best-fit r-band Sersic model of n = 5.5 and r(e) = 13.1 kpc. If the excess light at r > 100 kpc is considered to be part of the galaxy, the best-fit r-band Sersic parameters are n = 5.8 and r(e) = 13.6 kpc. In addition, we study the radially dependent stack ellipticity and find an increase with radius from epsilon = 0.25 at r = 10 kpc to epsilon = 0.3 at r = 100 kpc. This provides support that the stellar light that we trace out to at least 100 kpc is physically associated with the galaxies themselves and may confirm that the halos of individual LRGs have higher ellipticities than their central parts. Lastly, we show that the broadband color gradients of the stacked images are flat beyond roughly 40 kpc, suggesting that the stellar populations do not vary significantly with radius in the outer parts of massive ellipticals.
更多
查看译文
PDF
PPT

代码

数据

原文链接
引用

0
您的评分 :

暂无评分

标签
评论
avatar
作者解读

点赞

0%
0/20人

想看人数超过20人时,我们会邀请作者来解读:

  • 解决的问题
  • 实验设计的思路
  • 重要创新
  • 后续可能的深入研究
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn