Self-Heating Induced Instability Of Oxide Thin Film Transistors Under Dynamic Stress

APPLIED PHYSICS LETTERS(2016)

引用 7|浏览1
暂无评分
摘要
Degradation caused by Joule heating of transparent amorphous oxide semiconductor thin-film transistors (TFTs) is an important issue for display technology. Deep understanding of the mechanism of self-heating degradation generated by driving pulse voltage will pave the way for the development of highly reliable flexible displays. In this work, by using a pseudo interval measurement method, we examined the relationship of the highest and the lowest heating temperature in pulse 1 cycle and frequency. These self-heating converged to a constant temperature under pulse voltage applied at 1 kHz. Moreover, the long-term reliability under positive-bias stress voltage at 1 kHz of low converged temperature condition was improved relative to that of the stress voltage at 10 Hz of dynamic temperature change condition. We discussed the degradation mechanism of oxide TFTs generated by pulse voltage, and clarified that the degradation was accelerated by thermionic emission which occurred at low frequency. (C) 2016 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要