Studies of highly charged iron ions using electron beam ion traps for interpreting astrophysical spectra

PHYSICA SCRIPTA(2013)

引用 2|浏览61
暂无评分
摘要
For over a decade, the x-ray astrophysics community has enjoyed a fruitful epoch of discovery largely as a result of the successful launch and operation of the high resolution, high sensitivity spectrometers on board the Chandra, XMM-Newton and Suzaku x-ray observatories. With the launch of the x-ray calorimeter spectrometer on the Astro-H x-ray observatory in 2014, the diagnostic power of high resolution spectroscopy will be extended to some of the hottest, largest and most exotic objects in our Universe. The diagnostic utility of these spectrometers is directly coupled to, and often limited by, our understanding of the x-ray production mechanisms associated with the highly charged ions present in the astrophysical source. To provide reliable benchmarks of theoretical calculations and to address specific problems facing the x-ray astrophysics community, electron beam ion traps have been used in laboratory astrophysics experiments to study the x-ray signatures of highly charged ions. A brief overview of the EBIT-I electron beam ion trap operated at Lawrence Livermore National Laboratory and the Max-Planck-Institut fur Kernphysik's FLASH-EBIT operated at third and fourth generation advanced light sources, including a discussion of some of the results are presented.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要