Regional Sea Level Variation on Interannual Timescale in the East China Sea

International Journal of Geosciences(2014)

引用 11|浏览1
暂无评分
摘要
Interannual sea level variation is investigated with the oceanic and atmospheric datasets in the East China Sea (ECS). Two modes are distinct on the interannual timescale, illustrated as the basin mode and the dipole mode. They account for 20% and 18% to the total interannual sea level variance respectively. The basin mode corresponds to the variability of the Kuroshio transport which is modulated by the PDO while the dipole mode is likely related to the local oceanic and atmospheric adjustment. Large-scale atmospheric circulation effect is dominant in influencing the interannual sea level in the ECS. ECS sea level responds barotropically to the basin-wide wind field, which illustrates negative correlation to the zonal-mean wind stress curl in the Pacific Ocean. Sea level variation exhibits the negative correlation at 8 years lag with the basin mean wind stress curl anomalies on the interannual timescale. The lagging years are consistent with the timescale that the baroclinic Rossby waves propagate westward in the North Pacific Ocean. Wind stress curl anomalies could also change the strength of the Kuroshio transport, and thus affect the local sea level through sea surface height adjustment. Local oceanic and atmospheric effect illustrates as another influence process. Steric effect contributes more than 20% to the interannual sea level gradually in a belt from the Fujian and Zhejiang coasts to the Korea/Tsushima strait. Especially in the northeast part, its contribution could be up to 60%. While for the local atmospheric process, zonal wind acts as a more important role on sea level than meridional component.
更多
查看译文
关键词
steric effect,ocean current
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要