对话

Entropy of Non-Extremal Black Holes from Loop Gravity

mag(2012)

引用 58|浏览33
摘要
We compute the entropy of non-extremal black holes using the quantum dynamics of Loop Gravity. The horizon entropy is finite, scales linearly with the area A, and reproduces the Bekenstein-Hawking expression S = A/4 with the one-fourth coefficient for all values of the Immirzi parameter. The near-horizon geometry of a non-extremal black hole - as seen by a stationary observer - is described by a Rindler horizon. We introduce the notion of a quantum Rindler horizon in the framework of Loop Gravity. The system is described by a quantum surface and the dynamics is generated by the boost Hamiltonion of Lorentzian Spinfoams. We show that the expectation value of the boost Hamiltonian reproduces the local horizon energy of Frodden, Ghosh and Perez. We study the coupling of the geometry of the quantum horizon to a two-level system and show that it thermalizes to the local Unruh temperature. The derived values of the energy and the temperature allow one to compute the thermodynamic entropy of the quantum horizon. The relation with the Spinfoam partition function is discussed.
更多
查看译文
关键词
partition function,spin foam,immirzi parameter,black hole entropy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn