Post-spaceflight recovery of biomechanical properties of murine intervertebral discs

Gravitational and Space Research(2012)

引用 23|浏览7
暂无评分
摘要
Introduction: Prolonged exposure to microgravity during spaceflight is thought to adversely affect the human spine because of reports that disc herniation risk is increased post-spaceflight. The increased herniation risk is highest during the first post-spaceflight year, and gradually subsides thereafter. Consequently, we hypothesized that the biomechanical properties of the intervertebral disc (IVD) deteriorate during spaceflight but then recover after acclimation to normal gravity. To test this hypothesis, we compared the compressive creep properties of caudal IVDs of murine subjects that had returned from a 13-day Shuttle mission (STS-133) to those of ground-based control mice. Methods: Spaceflight (n=6) and control (n=10) groups consisted of 13-week-old, BALB/c mice (11 weeks at launch). Mice were sacrificed +1 day, +5 days, or +7 days after the landing of STS-133. Disc height was measured in situ, and compressive creep rate was fit to a fluid transport model to determine disc biomechanical properties. Results: Compared to controls, spaceflight mice had 12% lower disc height and 21% lower strain-dependence on swelling pressure. Biomechanical properties did not recover significantly over the 7-day post-flight period. Discussion: Biomechanical properties of the murine caudal IVD were diminished by spaceflight, consistent with observations that prolonged exposure to microgravity increases disc herniation risk. These properties did not recover after short-term re-acclimation to 1g loading.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要