Using the X-FEL to Understand X-Ray Thomson Scattering for Partially Ionized Plasmas

Springer Proceedings in Physics(2014)

引用 0|浏览6
暂无评分
摘要
For the last decade numerous researchers have been trying to develop experimental techniques to use X-ray Thomson scattering as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic X-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have such a source available in the keV regime. Other X-FEL sources are being built in Germany and around the world. One challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and the electron-electron plasmon scattering and add the contribution of the bound electrons in the partially ionized plasmas. Except for hydrogen plasmas almost every plasma that is studied today has bound electrons and it is important to understand their contribution to the Thomson scattering, especially as new X-ray sources such as the X-FEL will allow us to study much higher Z plasmas. Currently most experiments have looked at hydrogen or beryllium. We will first look at the bound electron contributions to beryllium by analyzing existing experimental data. We then consider several higher Z materials such as Cr and predict the existence of additional peaks in the scattering spectrum that requires new computational tools to understand. For a Sn plasma we show that the bound contributions changes the shape of the scattered spectrum in a way that would change the plasma temperature and density inferred by the experiment.
更多
查看译文
关键词
Plasmon Peak, Solid Density, Thomson Scattering, Linac Coherent Light Source, Bound State Contribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要