Exotic magnetism of s -electron cluster arrays: Ferromagnetism, ferrimagnetism and antiferromagnetism

Journal of the Korean Physical Society(2013)

引用 9|浏览2
暂无评分
摘要
Alkali metal nanoclusters can be stabilized in the regular cages of zeolite crystals by the loading of guest alkali metals. Cages are connected by the sharing of windows of the framework, and arrayed in simple cubic, diamond and body centered cubic structures in zeolites A, X and sodalite, respectively. The s -electrons have the localized nature of nanoclusters with magnetic moments, and have mutual interactions through the windows of cages. They show exotic magnetism depending on the structure type of zeolites, the kind of alkali metals and the average loading density of alkali atoms per cage. In zeolite A, potassium clusters are formed in α -cages that have an inside diameter of 11 Å. They exhibit ferromagnetic properties explained by the canted antiferromagnetism of the Mott insulator, where the 1 p -like degenerate orbitals of clusters play an essential role in the magnetic properties. Na-K alloy clusters generated at supercages and β -cages of low-silica X (LSX) zeolite exhibit Néel’s N-type ferrimagnetism at specific loading densities of alkali metals. Alkali metal clusters in sodalite show the ideal Heisenberg antiferromagnetism of the Mott insulator.
更多
查看译文
关键词
Alkali metal, Cluster, Ferromagnetism, Ferrimagnetism, Antiferromagnetism, Zeolite, Spin orbit interaction, Nanomaterial, Superatom
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要